Applied Mathematics and Computation 219 (2013) 4444-4464

Contents lists available at SciVerse ScienceDirect

Applied Mathematics and Computation

journal homepage: www.elsevier.com/locate/amc

Finding all real roots of 3 x 3 nonlinear algebraic systems
using neural networks

Konstantinos Goulianas?, Athanasios Margaris >*, Miltiades Adamopoulos

ATEI of Thessaloniki, Department of Informatics, Thessaloniki, Greece
Y TEI of Larissa, Department of Computer Science and Telecommunications, Greece
€University of Macedonia, Thessaloniki, Greece

ARTICLE INFO ABSTRACT

Keywords: The objective of this research is the description of a feed-forward neural network capable
Nonlinear algebraic systems of solving nonlinear algebraic systems with polynomials equations. The basic features of
Neural networks the proposed structure, include among other things, product units trained by the back-
Numerical analysis propagation algorithm and a fixed input unit with a constant input of unity. The presented
Computational methods theory is demonstrated by solving complete 3 x 3 nonlinear algebraic system paradigms,
and the accuracy of the method is tested by comparing the experimental results produced

by the network, with the theoretical values of the systems roots.
© 2012 Elsevier Inc. All rights reserved.

1. Introduction

A typical nonlinear algebraic system is defined as F(Z) = 0 with the mapping function F : R" — R" (n > 1) to be described
as an n-dimensional vector

F:[fl’fzv"'vfﬂ]T7 (])

where f; : R" — R(i=1,2,...,n). Generally speaking, there are no good methods for solving such systems: even in the simple
case of only two equations in the form f;(z1,z;) = 0 and f,(z;,2,) = 0, the estimation of the system roots is reduced to the
identification of the common points of the zero contours of the functions f;(z1,z;) and f,(z1,22). But this is a very difficult
task, since in general, these two functions have no relation to each other at all. In the general case of N nonlinear equations,
solving the system requires the identification of points that are mutually common to N unrelated zero-contour hyper-
surfaces each of dimension N — 1 [28].

2. Nonlinear algebraic systems

According to the basic principles of the nonlinear algebra [26], a complete nonlinear algebraic system of n polynomial
equations with n unknowns Z = (z;,z,...,z,) is identified completely by the number of equations n, and their degrees
(51,S2,...,5n), it is expressed mathematically as

n . .
F@) = > A"7"%zz,...2 =0 2)
Jrdz e

* Corresponding author.
E-mail addresses: gouliana@it.teithe.gr (K. Goulianas), amarg@teilar.gr, amarg@uom.gr (A. Margaris), miltos@uom.gr (M. Adamopoulos).

0096-3003/$ - see front matter © 2012 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.amc.2012.10.049

http://dx.doi.org/10.1016/j.amc.2012.10.049
mailto:gouliana@it.teithe.gr
mailto:amarg@teilar.gr
mailto:amarg@uom.gr
mailto:miltos@uom.gr
http://dx.doi.org/10.1016/j.amc.2012.10.049
http://www.sciencedirect.com/science/journal/00963003
http://www.elsevier.com/locate/amc

K. Goulianas et al. / Applied Mathematics and Computation 219 (2013) 4444-4464 4445

(i=1,2,...,n), and it has one non-vanishing solution (i.e. at least one z; # 0) if and only if the equation
Ry {47} =0 3)

holds. In this equation, the function R is called the resultant and it is a straightforward generalization of the determinant of a
linear system. The resultant R is a polynomial of the coefficients of A of degree

ds, ;.50 = 4G4 Rs, 5,50 = Z <H5j> (4)

i=1 \jAi

When all degrees coincide, i.e. s; =$, =--- =5, =S5, the resultant R, is reduced to a simple polynomial of degree
dns = deg, My = ns"! and it is described completely by the values of the parameters n and s. It can be proven that the coef-
ficients of the matrix A, which is actually a tensor for n > 2, are not all independent each other. More specifically, for the

simple case s; =, =--- =s, = s, the matrix A is symmetric in the last s contra-variant indices and it contains only nMy
independent coefficients, with
(n+s-1)
My=~——___"/. 5
nls (n _ 1)!5! ()

An interesting description concerning the existence of solution for a nonlinear algebraic system can be found in [30].
Even though the notion of the resultant has been defined for homogenous nonlinear equations, it can also describe non-
homogenous algebraic equations as well. In the general case, the resultant R, satisfies the nonlinear Cramer rule

Rs, 5, 5 {AY(Z)} =0, (6)

where Z, is the k;, component of the solution of the no homogenous system, and A¥ is the k;, column of the coefficient ma-
trix A.

3. Review of previous work

The solution of nonlinear algebraic systems is generally possible by using not analytical, but numerical algorithms. Be-
sides the well known fixed-point based methods, (quasi)-Newton and gradient descent methods, a well known class of such
algorithms is the ABS algorithms introduced in 1984 by Abaffy, Broyden, and Spedicato [10] to solve linear systems as well as
nonlinear equations and system of equations [11,4]. The basic function of the initial ABS algorithms is to solve a determined
or under-determined n x m linear system Az = b (z € R",b € R", m < n) by using special matrices, known as Abaffians. The
choice of those matrices as well as the quantities used in their defining equations, determine particular sub-classes of the
ABS algorithms, the most important of them are the conjugate direction subclass, the orthogonality scaled subclass as well
as, the optimally stable subclass. The extension of the ABS methods for solving nonlinear algebraic systems is straightfor-
ward and it can be found in many sources such as [9,8]. It can be proven, that under appropriate conditions, the ABS methods
are locally convergent with a speed of Q-order two, while, the computational cost of one iteration is O(n®) flops plus one
function and one Jacobian matrix evaluation. To save the cost of Jacobian matrix evaluations, Huang [5] introduced quasi-
Newton based ABS methods known as row update methods. These methods, do not require the a priori computation of
the Jacobian matrix, and therefore its computational cost is O(n?).

Galantai and Jeney [1] have proposed alternative methods for solving nonlinear systems of equations that are combina-
tions of the nonlinear ABS methods and quasi-Newton methods. Another class of methods has been proposed by Kublanovs-
kaya and Simonova [27] for estimating the roots of m nonlinear coupled algebraic equations with two unknowns / and u. In
their work, the nonlinear system under consideration is described by the algebraic equation F(4,u) = [fi(4,),
fo(2 W), ... fin(2, w)]" = 0 with the function fi(2, 1) (k = 1,...,m) to be a polynomial in the form

e) = [t -+)7+ o) -+ o). (7)

In this equation, the coefficients o;; (i=0,1,...,t and j=0,1,...,s) are, in general, complex numbers, while s and ¢ are the
maximum degrees of polynomials in 4 and u respectively, found in F(4, 1) = 0. The algorithms proposed by Kublanovskaya
and Simonova are capable of finding the zero-dimensional roots (1", u*), i.e. the pairs of fixed numbers satisfying the non-
linear system, as well as the one-dimensional roots defined as (4, i) = [@(w), i} and (4, 1) = [4, ¢(4)] whose components
are functionally related.

The first method of Kublanovskaya and Simonova consists of two stages. At the first stage, the process passes from the
system F(/, i) = 0 to the spectral problem for a pencil D(4, i) = A(xt) — 2B(u) of polynomial matrices A(xt) and B(u), whose
zero-dimensional and one-dimensional eigenvalues coincide with the zero dimensional and one dimensional roots of the
nonlinear system under consideration. On the other hand, at the second stage, the spectral problem for D(2, u) is solved,
i.e. all zero-dimensional eigenvalues of D(/, i) as well as a regular polynomial matrix pencil whose spectrum gives all
one-dimensional eigenvalues of D(/,) are found. Regarding the second method, it is based to the factorization of F(4, i) into
irreducible factors and to the estimation of the roots (u, 1) one after the other, since the resulting polynomials produced by
this factorization are polynomials of only one variable.

4446 K. Goulianas et al. / Applied Mathematics and Computation 219 (2013) 4444-4464

Emiris, Mourrain, and Vrahatis [7] developed a method for the counting and identification of the roots of a nonlinear alge-
braic system based to the concept of topological degree and by using bisection techniques (for the application of those tech-
niques see also [22]). A method for solving such a system using linear programming techniques can be found in [29], and
another interesting method that uses evolutionary algorithms is described in [6]. There are many other methods concerning
this subject; some of them are described in [2,25,24,12]. In the concluding section, the proposed neural model will be com-
pared against some of those other methods such as the trust-region-dogleg [3], the trust-region-reflective [3] and the Leven-
berg-Marquardt algorithm [15,20], as well as the multivariate Newton-Raphson method with partial derivatives.

4. ANNs as nonlinear system solvers

Artificial neural networks (ANNs in short) have been used among other methods for solving linear algebra problems and
simple linear systems and equations [14,13] as well as nonlinear equations and systems of nonlinear equations; however,
they are not used so frequent as the methods described in the previous section, especially for the case of nonlinear systems.
Mathia and Saeks [21] used recurrent neural networks composed of linear Hopfield networks to solve nonlinear equations
which are approximated by a multilayer perceptron. Mishra and Kalra [23] used a modified Hopfield network with a properly
selected energy function to solve a nonlinear algebraic system of m equations with n unknowns. Hopfield neural networks
were also used by Luo and Han [17] to solve a nonlinear system of equations which in the previous stage has been trans-
formed to a kind of quadratic optimization. Finally, Li and Zeng [16] used the gradient descent rule with a variable step size
to solve nonlinear algebraic systems at very rapid convergence and with very high accuracy.

The main idea behind the proposed approach for solving a nonlinear algebraic system of p equations with p unknowns
[18], is to construct a network with p output neurons, with the desired output of the ¢y neuron (1 < ¢ < p) to be equal to
zero; in this way, the nonlinear algebraic system under consideration is simulated completely by the neural model. An effi-
cient approach to construct such a network is shown in Fig. 1 for the case of a complete 2 x 2 nonlinear algebraic system
[19]. In this figure, the proposed model is composed of four layers, an input layer, with one summation unit with a constant
input equal to unity, a hidden layer of linear units that generate the linear terms x and y, a hidden layer of summation and
product units that generate all the terms of the left hand part of the system equations except the fixed term - namely, the
terms x,y,x?,xy and y? — by using the appropriate activation function (for example, the activation function of the neuron

Linear
Unit
fx=x?

(bias unit)
L2513
Linear
Unit
Linear
Unit
f(x)=tanhx

(bias unit)

Wi Was

LAYER 1 LAYER 2 LAYER 3 LAYER 4

Fig. 1. The structure of the complete 2 x 2 nonlinear algebraic system neural solver.

K. Goulianas et al. / Applied Mathematics and Computation 219 (2013) 4444-4464 4447

producing the x?> term is the function f(x) = x?) and finally, an output layer of summation units whose total input is the
expression of the left hand part of the corresponding equation. These output neurons uses the hyperbolic tangent as the acti-
vation function and have an additional input from a bias unit, whose fixed weight is the constant term of the associated non-
linear equation. To simulate the system, the synaptic weights are configured in the way shown in the figure. It is not difficult
to note that the weights of synapses joining the neurons of the second layer to the neurons of the third layer, are fixed and
equal to unity, while the weights joining the summation and the product units of the third layer to the neurons of the fourth
(output) layer have been set to the fixed values of the coefficients of the system equations associated with the linear and
nonlinear terms provided by the neurons (it is clear that if the algebraic system is not complete but there are missing terms,
the corresponding synaptic weights are set to zero). The only variable-weight synapses are the two synapses that join the
input neuron with the two linear neurons of the first hidden layer. Since this network structure produces as output a zero
value, it is clear that a training operation with the traditional back propagation algorithm and the [0 0]" as the desired output
vector, will assign to the weights of the two variable weight synapses, the components x and y of one of the system roots. The
training of this network with a lot of initial conditions is capable of identifying all roots of the traditional 2 x 2 complete
nonlinear algebraic systems with four distinct roots as well as the basin of attraction for each one of them and the basin
of infinity that lead to a nonconverging behavior [19].

5. The neural model for the 3 x 3 complete nonlinear algebraic system

The complete 3 x 3 nonlinear algebraic system is defined as
Fi(X1,X2,X3) = 041X -+ 0ioX3 + 06i3X3 4 06 4X3Xy + 0lisX1 X3 4 0l 6X2X3 4 +04 7X1X3 + 04 gX2X3 -+ 04 9XaX3 -+ 0 10X1X2X3
+ 0i11X1X2 + +0i12X1X3 + *j13X2X3 + OCi,14X% + Ofmsxﬁ + Ofi.wX% + 0 17X1 + Oi18X2 + %i19X3 — Qizo =0
(i=1,2,3) and it is a straightforward generalization of the 2 x 2 complete nonlinear system studied in [19]. The neural
structure that solves this type of system is based to the approach described in the previous section, it is described in Table
1 and it is shown in Fig. 2. In complete accordance with the proposed design, there are full connections between two con-

secutive layers; however, for the sake of clarity, the figure shows only the connections with nonzero synaptic weighs. These
weights are defined as follows:

URTTCRTTE
Wi, = Wy WY WY | = [xixxs],

111 000O000O0O0
Wy ={Wy122>2—-10 0011100 0f,
000000O0T1 1 1]
rt o001 011000O0O0OO0O1TT1O0O0O0 07
010010O0OO0OO0OO0OO0OO0OO0OO0OO0OT11UO0OQO0OD0
0010O0OO0OOO0OOODOOOOOOOODOO0OO
00011011001 10O0O0O0O0O0OTGO0
Wiy = (W)Y 15257 =10 00001 001000100000 O],
00O0O0OOOOOOT1O0OOOOOOOOGO
0o000O0OO0O1TO0OO0OO0OTTI1TT1TT1TO0T1T1TO00
00O0O0OOO0ODO0OO0OO0OO0OO0O11TO0O11O0®O0OT1TO
LOOOOOOOOOOOOOOOOSQO0OTO0 1]
Table 1
The structure of the neural solver for the 3 x 3 complete nonlinear algebraic system.
Layer Neurons Neuron type Weight table
Layer 1 01 Summation Wiy (1 x 3)
Layer 2 03 Summation Wy3(3 x9)
Layer 3 09 Summation Ws34(9 x 19)
Layer 4 19 Product & Summation Wy5(19 x 3)

Neurons 1,2,3,8,9,10,17,18,19
Summation units
Neurons 4,5,6,7,11,12,13,14,15,16
Product units
Layer 5 03 Summation Not available

4448 K. Goulianas et al. /Applied Mathematics and Computation 219 (2013) 4444-4464

Fig. 2. The structure of the complete 3 x 3 nonlinear algebraic system neural solver. Since the back propagation algorithm requires full connections
between consecutive layers, the missing synapses are modeled as synapses with zero weight values. For the sake of simplicity, the parameters x;, x, and x;
are denoted as x, y and z, respectively, while the parameters ;5 (i = 1,2,3) are denoted as o, 5o and J.,.

[0117 O217 0317
X114 014 0314
011 O21 O3
Ol Oz O3
O1a 04 34
015 Oas5 U35
O1,10 G210 0310
%118 0218 0318
%115 0215 0315

Wy = | 04p Op 03

013 0213 9313

019 Oag9 U39

g Oog U3g

X112 G212 U312

O7 Oz 037

O Oe O3p

X119 G219 (319

%116 0216 03,16

L %13 023 033]
The activation function for the neurons of the network structure are defined as follows:
e For the second layer: all neurons use the identity function; therefore we have
vy =v, i=1,23.

e For the third layer: the activation functions of the nine neurons are defined as follows:

1 2 3 4 5 6 7 8 9
I A O O S UL)

o For the fourth layer: all the neurons use the identity function, namely

flo)=v. i=

o For the fifth (output) layer: all the neurons use the hyperbolic tangent function, namely

£ (v) = tanh(v)

K. Goulianas et al. / Applied Mathematics and Computation 219 (2013) 4444-4464

1,2,3,...,17,18,19.

, 1=1,2,3.

6. Building the back propagation equations

4449

By following the traditional back propagation approach, the equation for training the neural network are constructed as

follows:

6.1. Forward pass

The input to the three neurons of the second layer are estimated as

i =W —x,

while the outputs produced by them have the values

i=1,2,3

v =) = fYx) = x, i=1,2,3.

These outputs are sent as inputs to the neurons of the third layer, whose total input is thus given by the equation

(.0) 4,0)
l)3 = ZWZB V'

or in expanded form
vy = Wiy
vy = Wy Vé”
0(33) = W23 vy
v§ = WisHvy
vy = Wi Vz
0® — WSy
vy = wi;” Vz
= Wyvy

9 _ (1
U3 —W23 Vz

On the other hand, the outputs of the neurons of the third layer are estimated as

j=1,2,3,4,5,6,7,8,9

+W23 v2 +W23 v2 = X1,
+ WSV L WEPVY = x,,
+W23 v2 +W23 v2 = X1,
L WEIWE L WEIYE = x,,
+W23 v2 +W23 v2 = X3,
+W23 v2 +W23 v2 =Xz,
+W v2 +W233'7v2):x3,
+W23 v2 +W23 v2 = X3,
+W23 v2 +W23 v2 = X3.

vy =) = £ 00 = x4,
vy =f) =700 =,

S =) = £ =,

Y =100 =) =%,
v =fT) =7) =%,
v =fYO) =70 =%,
v =f) = £ (2) =,
v = £ 0F) =£7(2) = 5,
vy =70 =£5(2) = .

These outputs are sent as inputs to the neurons of the fourth layer. For the summation neurons, their total input is estimated

as

(.0) 4,0)
04 = ZW34 V3

. i=1,2,3,8,9,10,17,18,19

4450 K. Goulianas et al. /Applied Mathematics and Computation 219 (2013) 4444-4464

or in expanded form

11) My _
ZWM V3 = (W3 'vy’) =x1,
(2) (12 (2,2)4,(2) 2
Oy :ZWM = (W37vy") =x,
j:l
33) (3) 3
ZW W3, 7vs7) =X,

i.8) 0 4.8) (4
=W - W) <,

j:l
(9) (19 (5.9)4,(5) 2
Uy :ZWM = (W3vy") =X,
j=1

10) 6.10), (6 3
ZWO v = W) =3,

9
17 17) 7.17),(7
vy = ZW& v = (W) = xs,
j=1

9

(18) _ (7.18) 3, () (8,18)4,(8) _ 42

Oy ZW34 vy = (W3 7vy7) = x5
=

9

(19) _ (,19)4,() _ (9,19),(9)y _ 43

Uy _ZW34 vy = (W3 7vy7) =x3
A

while the outputs of the product units of this fourth layer are estimated as

vf = [[wivy, i=4,56,711,12,13,14,15,16,
JeS;

where S; is the set of indices of the neurons of the third layer that are connected to the iy neuron of the fourth layer
(i=4,5,6,7,11,12,13,14,15,16). If we expand this equation we get a set of equations in the form

o = Wiy W) = xixa,

of! = (WG WEVY) = s,

vg) = (WEIV) WSV = x5,

vy = (W Vi) WV W) = xixons,
og! = (W)WY = o,

0g? = (W) WPV = x5,

03 = W5V W) = s,

of = (WEVD)Y W) = xixs,

0g¥ = (WP)WV = 6,

0g® = (W) WOV = xixs

with the outputs of the fourth layer estimated as

1 1 1 1
vy =f) =f %) =x,

v =fP00) =F7) = 1,

v =f0) = £7(¢) = x,

vi! = £ o) = £ (%) = 21,
v = £ 0) = £ (y) = X%,
vi) = £ 05) = £ (%) = 11,
v =F o) = £ (xy2) = xix23,
v =P 0P =FP) = %,

K. Goulianas et al. / Applied Mathematics and Computation 219 (2013) 4444-4464 4451

=fP09) =f)) =2,
vi e i Y0 = £) =%,
L)) = £ (v2) = X3,
L7 0)7) =FP (v2) = %3,
f D0 = £ (v’2) = 8xs,
><v££“) =£17(x2) = xaxs,
L)) = £ (x2) = a8,
10 0)%) = £1° (¢2) = x5
§) =F"(2) = xs,
20 =£0(2) =%,
f Y0 =£72) =

Finally, the total input to the three summation neurons of the output layer is estimated as
o
= sz(tls)fo) = 01,17%1 + 051,14?4% + OC]JX? + 001,11X1X2 + 051.4X%X2 + 051.5X1X% + 0l1,10X1X2X3 + 01.18X2 + Oﬁ.lsxg
j=1

3 2 2 2 2 2 3
+ 001 2X5 + 001,13X2X3 + 01 9X2X3 + 01 8X5X3 + 001,12X1X3 + 01 7X1X3 + 001 6X5X3 + Ol1,19X3 + O1,16X5 + X1 3X3 — 120
= Fi(X1,X2,X3),

j2)., G 2 3 2 2 2 3
= g Wi’s)Vf{) = 00217X1 + 002, 14X7] + 021X 002 11X1 X2 + 0lp aX 71Xy + 0 5X1X5 + 02 10X1X2X3 + 002 18X2 + 002 15X5 + 002 2X5
=

2 2 2 2 2 3
+ 002,13X2X3 + 02,9X2X5 + 0lp 8X5X3 + 02 12X1X3 + 02 7X1X5 + 0o 6X5X3 + Olz,10X3 + 02.16X5 + 023X3 — 020 = F2(X1,X2,X3)

3).,0 2 3 2 2 2
= ngs)Vg) = 003,17X1 + 0314X7 + 031X] + 03 11X1X2 + 03 4X7X2 + U3 5X1X5 + 03.10X1X2X3 + U318X2 + 0(3.15X5
j=1
3 2 2 2 2
+ OC3_2X2 + 063=]3X2X3 + O{3»9X2X3 + OC3‘3X2X3 + 003.12X1X3 + OC3‘7X1X3 + OC3.5X2X3 + 3,19X3
2 3
+ 0316X5 + 033X3 — 0320 = F3(X1,X2,X3)

while the output produced by them and it is the real output of the neural network is given by the equations

vV = 0, = tanh[pl"] = tanh[F; (x1,%,,X3)] = f(F1),
v = 0, = tanh[vl”] = tanh[F; (x1,%,,%3)] = f(F2),

v?) = 03 = tanh[vy’] = tanh[F3(x;, %, %3)] = f(F3),
where for the sake of brevity we define f(x) = tanh(x) and use the convention F; = F;(x,y,z) (i=1,2,3).
6.2. Backward pass - estimation of the 5 parameters

In this stage we use the vectors

5= (o) o2 o).

54:[5? D 5219)]7

8 = [5(3” 87 o & &Y &Y &7 &Y 5§9>]7

n=[a) o2 o]

to denote the & values of the fifth, the fourth, the third and the second layer, respectively.
Since the desired output of the neural network are the values d; = d, = d;3 = 0 it can be easily seen that

4452 K. Goulianas et al. /Applied Mathematics and Computation 219 (2013) 4444-4464

= (di — o)fS" (0) = —0uf' (F1) = —f(F1){1 - f2(F1)},
02 = (dy — 0)f P (V) = —0,f'(Fy) = —f(F2){1 — f*(Fa)},
00 = (ds — 03)fY (V) = —0af (F1) = —f(F3){1 — f2(F3)}.

Having estimated the components of the §s vector, we can now estimate the components of the §, vector (namely the delta
values of the fourth layer) by using the equation

3
_ o . _ofY
oy = S wied el k=1,...,19, where & .
4 — 45 05 Sy, € 802() 8X,

Since these neurons produce nonlinear terms we have generally to estimate more than one delta values for each one them,
and for each independent variable participating to the nonlinear term they produce.
In the above equation, there are many function derivatives with respect to x,y and z; these derivatives are estimated as

&% — 1 for (k,i) = {(1,1),(8,2), (17,3)} with &% = 0 for j = i.

ém = 2x; for (k,i) = {(2.1),(9,2),(18,3)} with &% = 0 for j # i.

&% = 3x2 for (ki) = {(3,1),(10,2),(19,3)} with & = 0 for j 1.

&7 = xx, for (i,j.0) = {(1,2,3).(2.1.3).(3.1,2)}.

&l — x for (k,ij) = {(4,1,2),(4,2,1), (11,2,3),(11,3,2),(14,1,3), (14,3, 1)}.
&% = 0 for (k,i) = {(4,3),(11,1),(14,2)}.

&% = x2 for (k,i,j) = {(5,2,1),(6,1,2), (12,2,3),(13,3,2),(15,1,3),(16,3,1)}.
&l — axx; for (k,ij) = {(5,1,2),(6,2,1), (12,3,2),(13,2,3),(15,3,1), (16,1,3)}.
0% — 0 for (k,i) = {(5,3),(6,3), (12,1),(13,1),(15,2), (16,2)}.

Based on the above expressions,we get the results

3
j 1
= %rdd, 8 =0,

3 -
5 =0, oD =2, 1400,
j=1

e =0, o =0,

3 -
0" =3x8 018y, 85" =0,

3 -
5513>X3 = 07 5514>X] =Xy E O(j_ntsg),
3 -
5% = xS sl S =0,

3 3
07 = xay a0, 7 =X 0440].
= =

5
oy = = xzz%sﬁ

3
05" = 2axay_ 04509, 857 =0,

3 3
7 j 7 j
0 =xox3 Y 1008, 07" =x1%3y 04100,
j=1 j=1

K. Goulianas et al. / Applied Mathematics and Computation 219 (2013) 4444-4464 4453

3
7 j 8
0" =x1% > w1008, 0" =0,
=

3 .
5 =Sl 80 0,
j=1

3 -
5P 0, 5% =2 1500,
=1

3 -
35 =36 a8, 8™ =0,
j=1
3 -
55111)x] -0, 5&11))@ =X3Zaj,135g)7
j=1
3 e
515 =3 ool 8P 0,
j=1
037 = x5y edl, 8P =225) 04001,
J= j

Jj=1
3 -
B0, 8% = 20> g0,
j=1
3 -
55114))(] = x32“}~126g)7 55114))(2 = 07
j=1

3
15 j 15
4 =3y oyp0d), 8P =0,
j=1

3 .
59 203 el 8% =0,
=

3
37" =8> o507,
=
14 2 j
X
621 " _ X]Zaj‘lzﬁg),
Jj=1

3
15 j
837" =2x1X3) o700,
j=1

4454 K. Goulianas et al. /Applied Mathematics and Computation 219 (2013) 4444-4464

3
16 j
e)
17 3 j
5y = Z“j.195é’)7

3 -
55118)?(3 _ 2X32aj,165g>7
=

3 -
5195 =32 o500
In the next step we use these values to estimate the parameters 5(3” (i=1,2,3,...,9) via the expression

19

S wis, =123,

j=1

&) = Y wilsl, i=4,56,
j=1

19
Swisie, =789

The results are the following
5;1) — 55}1))(1 + 5214))(1 + 5&6))(1 + 517))(1 + 55}14))(1 + 5115))‘1

3 . 3 X 3 X 3 . 3 X 3 . 3 X
= thj‘néé’) —+ Xzzaj‘ntsg) + XzZO(j_]] Bé” + X%ZOCJ“Slsg) + X2X3Zaj‘106g) + X3Zajy125g) + x%Zaj]Bg),
= =1 =1 =1 =1 =1 =1

5(32> 5 2 + 5 > + (5 (16m 2X1 ZOCJ 145 + 2X1XZZOCJ 45 + 2X1X3ZO(J 55
— = j=1

oY) = = 3xlzoc] 100

5;4) _ 55}4))(2 + 5515))(2 + 5;7))(2 + 528)x2 + 551”))(2 + 5212))(2

3 3 3 3 3 3
_ () 2 () ())) 2 ()
=X El %1105 + X3 21 %403 + X1X3 E] %1005 + El ®j1805 + X3 E] %1305 + X3 E] %905,
= = = = = i=

3 3 3
5 = o 60 o = 2 o+ 203 el + 20
= j= =

5(36> = 3XZZOC]250

5:()’7) — 55}7)){3 + 62111),%3 + 55}13))(3 + 52114))(3 + 55116)X3 +5Ell7)X3

3 X 3 . 3 X 3 . 3 X 3 .
= X1X220€j_10(;g) + XZZOCJ',B(sg) + X%Zocj_géé” + xlzaj,uég) + X%Zaj‘eﬁg) + Zajylgéé’),
=1 =1 =1 =1 =1 =1

5(38> = 55112))(3 + 52]5))‘3 + 55118) 2X2X3ZOCJ 95 + 2X]X3206j 75 + 2X3ZOCJ]55
j=1 j=1 j=1

o) = 3x3Zoc] 360

K. Goulianas et al. / Applied Mathematics and Computation 219 (2013) 4444-4464 4455

Finally, the values of ﬁ(zi) (i=1,2,3) are estimated via the equation
B =S WS (i-123)
=1
and the results are

o) =8 46 (3"12%1 + 2x1x22a,4 +x22%5 + ZX]ngOCJG +X3Zoc,7 +x2x3Zocj 10
3
' OFj(X1,X%2,X3)\ <
+ XzZOCj.]] + X3ZOC]_]]2 + 2X1 ZOC]:M + ZOCJ\”) ﬁg) — Z (J(T]) 5%’)’
= = = =

=1
o = o 4 50 <3xzz%z +xlzac,4 + 2x1szo<]5 + 2x2xgza,8 +x32%9 +x12%“
3
; . .) sl IF;(x1,%,%3)\ <)
+ X3;o¢].13 + ZX2;oc,‘15 + ;aﬂg +x1x3j§1:a]_m> 80 = Z(T 50,

=
o) = o) + 5 (Zaﬂ +xlzoc]6 + 2x1x3Zoc]7 +x22cx,8 + 2x2x32a]9 +X1XZZOC]10
3
‘ OF;(X1,X2,X3 i
+ Xlz%'.lz + Xzzij.w + 2X3Zaj,16 + 2%‘,19) 5? = Z (J(Tg) 5g)~
= = =) =)

=

6.3. Update of the synaptic weights

Proof. According to the back propagation algorithm, the update of the two variable weights ng =x; (i=1,2,3) is
performed as

3
; i i OF
(W)Y = (W) pog) — (Wi} + g3 50
=
or equivalently, as

W(i) (k+1) _ B F -l_ 2(F,)
{wi} /Zf] f(1))8W12,

where we used the expressions for the 52 and 62’ parameters.
From the definition of the mean square error of the back propagation algorithm

19 7 192 2(F
:jj;(df_f 7521 zzf

it can be easily seen that

OF OF; 2 OF;
— =) f(E)f(F) (F) (1~ f2(Fy))
oWy, ;f aWIZ lelf oW,

and therefore the weight update equation gets the form
i i OE
WY — Wiy =g
ow)

that completes the proof. O

7. Experimental results and comparison with other methods

To test the validity of the neural model and evaluate its precision and performance, typical 3 x 3 nonlinear systems were
constructed and solved using the network described above. The results and the analysis of the associated simulations, are
presented below.

4456 K. Goulianas et al. / Applied Mathematics and Computation 219 (2013) 4444-4464

Example 1. The first system we present has eight real roots and it consists of the following equations:
F1(X1,X2,X3) = X3 + 25 + X3 — X2Xy + X1X3 — X5X3 + X1 XoX3 — X1 — X —X3 = 0,
Fy(X1,X2,X3) = 0.5%3 4+ 0.5%3 + 0.5%3 — X3Xy + X1X3 — X2X3 + X1%2%3 — 0.5%3 — 0.5%3
— 0.5x§ —0.5%; —0.5%; — 0.5x3 + 1.5 =0,
F3(X1,X2,X3) = X3 + X3 + X3 4+ X2X%) — X1X3 + X3X3 — X1XoX3 + X2 + X3+ X2 — X1 —x, —x3-3=0

The solution of this system by means of symbolic packages such as Mathematica, reveals the existence of 8 discrete roots
with values

1. (X],Xz,X3) (1,—1,—1).

2. (X1,X2,x3) = (—1,-1,+1).

3. (X1,%2,%3) = (=1,+1,-1).

4. (X1,X2,X3) = (+1,71 +1).

5. (X17X27X3) = (+)

6. (X],Xz,X3) = (+1 +1 +1)

7. (X1,X2,X3) = (—1.224744, —-2E — 8,1.224744).
8. (X1,%,%:) = (1.224744,2E — 8, —1.224744).

To solve the above system, the neural model run many times with different initial conditions in the intervals
—3<x <25 -3<x <14, and -3 < x3 < 0.5 with a variation step Ax; = Ax, = Ax3 = 0.1. Therefore, the model run
207375 times to identify the basin of attraction of each root and to calculate the percentage of the initial conditions
associated with each root.

The operation of the neural network was simulated in MATLAB, and the components x;, X, and x3 of each root were
estimated by using recurrently the last equation of the previous section. The learning rate for the back propagation algorithm
was B = 0.005. Since the speed of convergence was too fast, the maximum number of iterations was set to N = 10000;
therefore after 10000 iterations, the system was characterized as nonconvergent if it was unable to reach a root, with the
process to move to the next point of initial conditions. For each such point, the network either reached one of the eight
system roots (it is important to say that the network was able to identify all roots) or it was unable to estimate one of those
roots. The basin of attraction for the eight roots as well as the number of points of that basin are depicted graphically in Figs.
3-6. Since these figures are three dimensional, in the above plots the projections x; — X,, x; — X3 and x, — x3 are shown. Even
though MATLAB supports the construction of 3D plots, these 2D graphs are more suitable for preview and they can be very
easily extended in three dimensions.

The basin of attraction of a root is defined as the fraction of the parameter space points (x;,x;,X3) — namely, the values of
the initial conditions - for which the neural network converged to that root. The ratio of the number of these basin points to
the total number of the tested initial condition points multiplied by 100, gives the percentage defined above. For each one of
the estimated roots, the best simulation run with respect to the minimal iteration number was identified.

The experimental results associated with this system are shown in Tables 2 and 3. Table 2 contains for each one of the
identified roots, the number of systems converged to that root, the average number of iterations and the mean square error
as well as the standard deviation of those values, and the average value of the x1, X, and x3 components for each root. On the
other hand, the data of Table 3 are associated with the best run for each root, with the criterion for the best system to be the
minimum number of iterations. The values shown for each best run, are the initial conditions (x{,x9,x3), the number of
iterations, as well as the values of the functions F; (x1,x2,X3), F2(x1,X2,X3) and F5(x1, X3, x3). For all best runs the value of MSE
were equal to E — 16.

ROOT NoofSystems PERCENTAGE
L
1 15 0,007% ">
2 9348 4,508% -
3 11487 5,539% e
4 11946 5,761%
5 8475 4,087% m5
6 18 0,009% ‘ u6
7 7486 3,610% 7
8 8057 3,885% R ug
NO ROOT 150543 72,595% —
TOTAL 207375

Fig. 3. Number of basin points for each one of the roots of System 1 and the nonconverging behavior, and the associated pie chart.

K. Goulianas et al. /Applied Mathematics and Computation 219 (2013) 4444-4464

4457

ROOT 1

ROOT 2

ROOT 3

Fig. 4. The basin of attraction for the roots 1,2 and 3 of the System 1 in the intervals defined above. For each root, the projections x; — X, X; — X3, and X, — X3
are shown in the top, middle, and bottom figure, respectively.

15 -
T
*
. =
05 + .
o s ; . !
05 3 15 15
15
2
15 *
* ~ .
1 * 2
25 r
o
05 1 15 15
— 15
2
15 .
ot *
*
1
05 =
-35 0s
- L]
. o5 1 15 25
ROOT 4 ROOT5 ROOT 6

Fig. 5. The basin of attraction for the roots 4,5 and 6 of the System 1 in the intervals defined above. For each root, the projections x; — X2, X; — X3, and x, — X3
are shown in the top, middle, and bottom figure, respectively.

4458 K. Goulianas et al./Applied Mathematics and Computation 219 (2013) 4444-4464

it
“3%% $)
T | 3
35 -3 15 -2 415 4 05 05
05 35
“““ s sttt §:
b -2,5 -2 15 1 PTit s 1 15
s e o
* -
|
$
b ¢ E:""‘
b 4 o .
$31
piiiiiiiiii $
25 -2 15 1 . e 05 1 15 2 -
ROOT 7 ROOT 8

Fig. 6. The basin of attraction for the roots 7 and 8 of the System 1 in the intervals defined above. For each root, the projections x; — x5, X; — X3, and x, — x3
are shown in the top, middle, and bottom figure, respectively.

The variation of the iteration number with the learning rate for the first example system is shown in Fig. 7. Due to the
large variation of the iteration number for the eight roots of the system, the vertical axis is not in a linear scale as the
horizontal axis but in a logarithmic one. From this figure it is clear that in most cases the number of iterations decreases, as a
learning rate increases, a fact, that it is of course expected. However, it has to be mentioned that for greater values of learning
rate, the neural network could not be able to converge to some root, and therefore, the allowable learning rate values are
much smaller than the typical value of 0.5-0.7 associated with the classical back-propagation value. This relatively small
values for the learning rate, leads to relatively large number of iterations, compared with the iteration number associated
with other methods as it is pointed out in the concluding section.

Example 2. The second system we present has four real roots and it consists of the following equations:
F1(X1,X2,X3) = X3 + X5 + X3 — 3x] — 2x3 — 2X3 + 2X; + X3 + X3 = 0,
Fo(X1,X2,X3) =X + X3 + X3 — X3 —5X3 —x3 + 8% —4=0,
F3(X1,X2,X3) = X3 + X3 + X3 — 4X3 — 4x5 — 5x3 4 4X; + 5%, + 8x3 — 6 =0.

The solution of this system with traditional methods reveals the existence of four roots with values

1. (%1,%:,%3) = (1.428042,0.384132, 1.383866).
2. (x1,%,%;) = (1.107007,1.008547, 0.568966).

K. Goulianas et al. /Applied Mathematics and Computation 219 (2013) 4444-4464 4459

Table 2
The experimental results for the eight roots of the first algebraic system.
Root no. AVG iteration STDEV iteration AVG MSE STDEV MSE
1 01451 04383.449 933.10"" 258.10""
2 19804 17287.220 266-1071° 124.10°13
3 19688 17374.550 367-10"1° 153.10° 13
4 24297 16527.800 3.81-10°1° 1.29.10°13
5 23075 15753.260 3.71-10°1° 1.20-10°13
6 3193 10744.260 8.89-107"7 323.10°"7
7 19162 16127.700 3.97.10°1° 152-10°13
8 19121 16205.900 350.10°1° 156-10 13
Root AVG AVG AVG
no. X1 X2 X3
1 -1 -1 -1
2 -1 -1 +1
3 -1 +1 -1
4 +1 -1 +1
5 +1 +1 -1
6 +1 +1 +1
7 —1.224744 4.107° 1.224744
8 1.224744 8.10°° —1.224744
Table 3
The results for the best run for each one of the eight roots of the first algebraic system.
Root x9 x9 x9 Iterations Fy Fy F3
1 -1.1 -1.1 -1.1 0138 ~10°8 ~10°8 0
2 -1.0 -0.5 +1.1 6224 _10°8 ~10°8 0
3 -1.1 +0.7 -13 6188 ~10°8 ~10°8 0
4 +0.5 -14 +0.7 7357 41078 ~10°8 0
5 +1.0 +0.7 -1.7 7045 _10°8 41078 0
6 +1.1 +1.1 +1.1 0054 0 41078 0
7 -1.2 +0.1 +1.7 5434 +10°8 _10°8 0
8 +0.6 -03 -1.2 5615 41078 _10°% 0
10000 1
e
e — "
10001~ — e
% —+— Root 1
..—5 ~@~ Root 2
i #~ Root 3
* —— Root4
: —+— Root 5
g —=— Root 6
s —— Root 7
= — Root 8
1 . ; Leaming
Rate

0.005 0.01 0.015 002 0015 0.g3

Fig. 7. The variation of the iteration number as a function of the learning rate for the first example system.

3. (X1,X2,X3) = (—0.020060,0.856390, 1.143860).
4. (x1,%.%3) = (0,1,1).

4460

Fig. 9. The basin of attraction for the roots 1 and 2 of the System 2 in the intervals defined above. For each root, the projections x; — X2, X; — X3, and x, — X3

Fig. 8. Number of basin points for each one of the roots of System 2 and the nonconverging behavior, and the associated pie chart.

K. Goulianas et al. /Applied Mathematics and Computation 219 (2013) 4444-4464

wWN e

NO ROOT
TOTAL

No of Systems PERCENTAGE

16
3847
1204
3294

21430

29791

0,054%
12,913%
4,041%
11,057%
71,934%

ml
m2
m3
m4

= NO ROOT

15

05

2

+*
+*

L d

*

+

15

*e

L 3

L]

>
e

*400

‘:].f'
’.“__A

PIFIT VNIV OITIONNN

s0008d

*oape
s

18
15
14

12

08
06
04
0.2

¢+

L

L 4

»

@

*
L 3

4

L J

L

1 15

15

0004
o

A $
Ereere
A
G
R b
EYRERVERS AEARET

-

-

s

I

L2

»

£

@

L d
»
L 4

*
L3
o

+

&

'S

2
CY

15

05

9

0

95

15

a4l

R asassad

ROOT 1

are shown in the top, middle, and bottom figure, respectively.

ROQOT 2

K. Goulianas et al. /Applied Mathematics and Computation 219 (2013) 4444-4464 4461

+5 3.5
* @ & &b & &3 ik
——-’»-—-’—**.—“ . 2 *’-*’*H -1 99— % — LR J L 3 L 2 L 3 L] @
T T : 2 4 -3 4
0000000000%5#000 BB BEBEEEETEEN] & &
* % ¢ ¢ ¢ 4 e ¢ ¢ 9 o
66000000400 $ 3333333338333 238
3 * @ 1: L 1: L 2 1: ® @ @ 5.11: 4 :D
i . e * Q4 o0 * o e e A A
L x .1-5: ® : ® ¢'°'5: ®. { ¢ & : $ 333333 ¢ ¢ ¢
R EEEEER EX 4 b4 F 3 5_:b 4:
* ¢ ¢ ¢ 0 4 4 (I B EBEEEE R ¢ &
‘H—.'%bi T T T T
".'.ﬂ:b * O 9 9 L 3 * @
¢ @ 4 3
4 4
b
35 4
+ TSP I S a
E R EEEEEEEEEER:
¢ 0 5 6 6 660669660 4
6 ¢ ¢ ¢ EEEEEEEXE ¥ 3
I R R EE EEEEEES
* *2 * +
EEEEEEEEEERE: - <
00000001»‘,000
L3 6 & & ¥ 4 *
BB EBEBEBE D ' f*t"
R L Be-e ; i
ELBLSE: R X HiHH
= -
I EREE
* e 4@ o
. =
2.5 2 15 1 05 0 05 1 3
’....-_’; 3 & &
R R e i $: 31
I REEREERR: I EEEEEERE ; 3
* & & & ¢ o ¢ $ ¢ ¢ ¢ ¢ ¢ 2
R R R E e
— o ¢ ¢
e 6 8 060606660060 00 t
oooooog‘oooooo
® ¢ 0 & ¢ 5 ¢ ¢ 6 & & @ - 3
R EEEEEEEEEE: "
— oo o o i; 1 "
I EEEEE RS
* o 0 o & & 4 3 1
4 4 4 6 ¥4 b
g reen :
-2 -15 -1 -0,5 o os 1 1.5 5

Fig. 10. The basin of attraction for the roots 3 and 4 of the System 2 in the intervals defined above. For each root, the projections x; — X2, X; — X3, and X, — X3
are shown in the top, middle, and bottom figure, respectively.

Table 4

The experimental results for the four roots of the second algebraic system.
Root no. AVG iteration STDEV iteration AVG MSE STDEV MSE AVG x; AVG x; AVG x3
1 05755 16561.010 10-16 3.82.10°%2 1.428042 0.384133 1.383867
2 06778 15292.079 1016 5.71.10-%° 1.070070 1.008547 0.568966
3 09366 15683.740 1.03.10°16 9.22.1017 —0.020060 0.856387 1.143864
4 15433 20414.910 1.01-10'¢ 4.45.10""7 952.10°° 1 1

As in the previous case, the neural model solved the system with a lot of different initial conditions in order to identify all
the four roots and estimate the basin of attraction for each one of them. More specifically, the parameters x;, X, and x3 were
varied in the interval —3 < x; < 3 with a variation step Ax; = 0.2 (i = 1,2, 3). The learning rate value was = 0.05 and the
maximum number of iterations was set to N = 100,000. The percentage of the basin points for the four roots and the
nonconverging behavior are shown in Fig. 8, while the projections x; — X3, X; — x3 and x, — x3 are plotted in Figs. 9 and 10.
Tables 4 and 5 are similar to Tables 2 and 3 respectively and contain the data of the statistical analysis applied to the second
system.

4462 K. Goulianas et al. /Applied Mathematics and Computation 219 (2013) 4444-4464

140007

12000
2
é 10000
2
£ 8000 ~+— Root1
k3 -8~ Root2
2 6000 Root 3
E —— Root4
Z 4000

2000

o Leaining
Rate
1] 001 0,02 0,03 0.04 00s 0.06

Fig. 11. The variation of the iteration number as a function of the learning rate for the second example system.

Table 5
The results for the best run for each one of the four roots of the second algebraic system.
Root x? xg xg’ Iterations Fq F; F3
1 +1.2 1 +1.6 0304 _2.10°8 0 0
2 +1.4 1 -0.2 0734 _2.10°8 ~10°8 0
3 +0.2 0 +0.8 1992 4+2.10°8 0 ~10°8
4 -0.8 1 +1.0 1930 4+2.10°8 0 _10°8
Table 6

Simulation results for the proposed neural method, the trust-region-dogleg as well as the trust-region-reflective algorithms. In the results associated with the
neural method the last column represents the learning rate associated with the run gave the presented results.

Root X1 X2 X3 Iterations Fq F, F3 LRate

Neural based nonlinear system solver

1 —1.000000 —1.000000 —1.000000 0006 ~10°8 ~10°8 1078 0.040

2 ~1.000000 ~1.000000 +1.000000 0797 10-8 _10-8 _10-8 0.050

3 —1.000000 +0.999999 —0.999999 0886 _10°8 ~10°8 0 0.050

4 +0.999999 —0.999999 +1.000000 1397 _10°8 +10°8 0 0.045

5 +1.000000 +0.999999 —0.999999 1602 ~10°8 +10°8 0 0.045

6 +1.000000 +1.000000 +1.000000 0010 +10°8 0 +10°8 0.015

7 —1.224744 —0.000000 +1.224744 1524 _10°% 1108 0 0.030

8 +1.224744 ~0.000000 —1.224744 0754 _10°® _10-8 _10-8 0.030
F;-107* F, 107 F3-107* o

Trust-region-dogleg algorithm

1 —0.999982 —0.999999 —1.000017 15 —0.123602 —0.062667 —0.180998 08

2 —0.999999 —1.000000 +0.999999 07 —0.105471 —0.071054 —0.004440 13

3 —1.000000 +1.000000 —0.999999 05 —0.000000 +0.666133 +0.444089 15

4 +1.000000 —0.999999 +1.000000 05 +0.174749 +0.013256 +0.373923 11

5 +0.999999 +0.999999 —1.000000 05 —0.654587 —0.462963 —0.385114 11

6 +0.999982 +0.999999 +1.000023 15 +0.298266 +0.122312 +0.317619 08

7 —1.224744 —0.000000 +1.224744 05 +0.888178 +0.444089 —0.888178 15

8 +1.224744 —0.000000 —1.224744 05 —0.103483 —0.068491 —0.069544 10

Trust-region-reflective algorithm

1 —0.998635 —1.001183 —1.000180 12 —0.998635 —1.001183 —1.000180 04

2 —1.000000 —1.000000 +1.000000 06 +0.222044 +0.444089 —0.000000 15

3 —1.000000 +1.000000 —1.000000 05 +0.444089 +0.444089 +0.000000 15

4 +1.000000 —0.999999 +1.000000 05 +0.179523 +0.005684 +0.357758 11

5 +0.999999 +0.999999 —1.000000 05 —0.648014 —0.450794 —0.383248 11

6 +0.999999 +1.000000 +1.000000 07 +0.088817 -+0.000000 +0.222044 14

7 —1.224744 —0.000000 +1.224744 05 +0.000000 +0.222044 +0.440089 15

8 +1.224744 —0.000000 —1.224744 07 +0.932587 +0.999200 —0.799360 14

The variation of the iteration number with the learning rate for the second example system is shown in Fig. 11 and it is
characterized by the same features as in the case of the first example system discussed above. It can be easily seen that the
variation of the learning rate is shown more clearly in Fig. 11 than Fig. 7 since the carves are shown in lin-lin axes and not in
lin-log axes (as in Fig. 7) due to the large spreading of the iteration number for all the available roots.

K. Goulianas et al. /Applied Mathematics and Computation 219 (2013) 4444-4464 4463

Table 7
Simulation results for the Levenberg-Marquardt algorithm as well as the multivariate Newton-Raphson method with partial derivatives. The / parameter of
the Levenberg-Marquardt algorithm has the default value 4 = 0.01.

Root X1 X2 X3 Iterations F;-107% Fy-107% F3-107% o
Levenberg-Marquardt algorithm

1 —1.000000 —0.999999 —0.999999 04 —0.024558 +0.007482 -0.112176 11
2 —1.000000 —1.000000 +1.000000 07 +0.341948 —0.421884 —0.133226 13
3 —1.000000 +1.000000 —1.000000 05 +0.177635 —0.444089 —0.266453 14
4 +0.999999 —0.999999 +1.000000 05 +0.236477 +0.190514 +0.607514 12
5 +0.999999 +1.000000 —1.000000 05 —0.515010 —0.675504 —0.469135 11
6 +0.999982 +1.000000 +1.000000 04 +0.113242 —0.008881 +0.275335 13
7 —1.224744 —0.000000 +1.224744 05 +0.888178 +0.444089 —0.000000 15
8 +1.224744 —0.000000 —1.224744 10 —0.187116 +0.235652 +0.073100 09
Multivariate Newton—-Raphson method with partial derivatives

1 —1.000000 —1.000000 —1.000000 2865 —0.444089 —0.222044 —0.444089 15
2 +1.000000 —1.000000 +1.000000 0009 —0.444089 +0.000000 +0.888178 15
3 —1.000000 +1.000000 —1.000000 0005 -+0.000000 +0.000000 +0.000000 00
4 +1.000000 —1.000000 +1.000000 0006 —0.044408 —0.044408 +0.177635 14
5 +1.000000 +1.000000 —1.000000 0006 -0.111022 +0.000000 +0.000000 15
6 +1.000000 —1.000000 +1.000000 0661 -+0.000000 +0.000000 0.0000000 00
7 —1.224744 —0.000000 +1.224744 0005 —0.155431 —0.128785 —0.479616 13
8 —0.999999 —0.999999 —1.000000 0045 —0.888178 +0.666133 —0.888178 15

After the presentation of the experimental results that demonstrate the application of the proposed neural solver, let us
proceed now to a comparison between the proposed method and other well known methods with respect to their
performance. Since the proposed algorithm is an iterative one, we chose for this comparison well known iterative numerical
algorithms such as the trust-region-dogleg [3], the trust-region-reflective [3] and the Levenberg-Marquardt algorithm
[15,20], as well as the multivariate Newton-Raphson method with partial derivatives. The first three algorithms are
supported by the fsolve function of the Optimization Toolbox of the MATLAB programming environment, while the Newton-
Raphson MATLAB implementation can be found in the literature - for a theoretical description of this algorithm, see for
example [28]. These algorithms were used to solve the problem using the initial conditions (xg,¥,Zo) of Table 3 associated
with the best run (to save pages, this comparison is restricted only to the first example system with eight roots, since its
extension to the second example system is straightforward).

The simulation results of these comparisons can be found in Tables 6 and 7. Table 6 contains the results of the proposed
neural solver as well as the trust-region-dogleg and trust-region-reflective algorithms. On the other hand, Table 7 contains
the results of the Levenberg-Marquardt and Newton-Raphson methods. Regarding the results associated with the proposed
algorithm, the last column contains the learning rate value that gave the associated iteration number for the specified initial
conditions, while for the other methods this column contains the order of magnitude of the functions evaluation in the
position of the estimated root.

From Tables 6 and 7 it can be easily seen that even though the neural based approach gave the correct results and with
the same accuracy, it requires much more iterations than the other methods, due to the small learning rate values that allow
the network to converge (see the discussion above). Of course, this situation can be improved somehow by adjusting
appropriately the learning rate value, as it can be easily seen by comparing the number of iterations in Tables 3 (a fixed
learning rate value g = 0.05) and 6 (the optimum learning rate identified via experimentation). In some cases (namely for
some methods and some roots) the neural method gave more accurate results than the other methods. From the last row in
Table 7 it can be seen that the Newton-Raphson method converged to the Root 1 instead of Root 8, possibly because the
associated initial condition is located near the boundary of the basin of attraction of these two roots. Besides this
disadvantage of the neural based approach (which, actually is not a major problem since modern computing systems are
characterized by very high speeds, and in most cases the duration of simulation time is not an issue), the proposed method is
easy in its implementation (since it uses the classical back propagation approach and therefore it computes the function
values in the first pass and the values of the partial derivatives via the estimation of § parameters), in contrast with the other
methods that are more difficult to implement since they require a lot of mathematics as well as complicated operations such
as Jacobian evaluations at specified points.

8. Conclusions and future work

The objective of this research was the numerical estimation of the roots of complete 3 x 3 nonlinear algebraic systems of
polynomial equations using back-propagation neural networks. The main advantage of this approach is the simple and
straightforward solution of the system, by building a structure that simulates exactly the nonlinear system under consider-
ation and find its roots via the classical back propagation approach. Depending on the position on the parameter space of the
initial condition used in each case, each run converged to one of the eight possible solutions or diverged to infinity; therefore,

4464 K. Goulianas et al. /Applied Mathematics and Computation 219 (2013) 4444-4464

the proposed neural structure is capable of finding all the roots of such a system, although this cannot be done in only one
step. One of the tasks associated with the future work on this subject is to improve or redesign the neural solver in order to
find all roots in only one run.

This research is going to be extended to cover systems with more dimensions and different types of equations of non-
polynomial nature. Special cases have to be investigated - as the case of double roots (and in general of roots with arbitrary
multiplicity) and the associated theory has to be formulated. Finally, this structure can be extended to cover the case of com-
plex roots and complex coefficients in nonlinear algebraic systems.

References

[1] A. Galantai, A. Jeney, Quasi-newton abs methods for solving nonlinear algebraic systems of equations, J. Optim. Theory Appl. 89 (3) (1996) 561-573.
[2] Chistine Jager, K.N. Dietmar Ralz, P. Pau, A combined method for enclosing all solutions of nonlinear systems of polynomial equations, Rel. Comput. 1
(1) (1995) 41-64.
[3] N.R. Conn, N.G., P. Toint, n.d. Trust-region methods, MPS/SIAM Series on Optimization.
[4] E. Spedicato, E. Bodon, A.P.N.M.-A. Abs methods and abspack for linear systems and optimization, a review, in: Proceedings of the third Seminar of
Numerical Analysis, Zahedan, November 15/17 2000.
[5] E. Spedicato, Z. Huang, Numerical experience with newton-like methods for nonlinear algebraic systems, Computing 58 (1997) 69-89.
[6] C. Grosan, A. Abraham, Solving nonlinear equation systems using evolutionary algorithms, IEEE Trans. Syst. Man Cybernet. A 38 (3) (2008).
[7] L. Emiris, B.M. Vrahatis, Sign methods for counting and computing real roots of algebraic systems, Technical Report RR-3669, INRIA, Sophia Antipolis,
1999.
[8] J. Abaffy, A.E. Spedicato, The local convergence of abs methods for nonlinear algebraic equations, Numer. Math. 51 (1987) 429-439.
[9] J. Abaffy, A. Galantai, Conjugate direction methods for linear and nonlinear systems of algebraic equations, in: P. Rezsa, D. Greenspan (Eds.), Numerical
Methods, Colloquia Mathematica Soc, Amsterdam, 1987, pp. 481-502.
[10] J. Abaffy, C.E. Spedicato, A class of direct methods for linear systems, Numerische Mathematik 45 (1984) 361-376.
[11] J. Abaffy, E. Spedicato, ABS Projection Algorithms: Mathematical Techniques for Linear and Nonlinear Equations, Ellis Horwood 1989.
[12] Jiwei Xue, Yaohui Zi, Y.F.-L\Y., Z. Lin, An intelligent hybrid algorithm for solving nonlinear polynomial systems, in: Proceedings of International
Conference on Computational Science, LCNS 3037, 2004, pp. 26-33.
[13] K.G. Margaritis, M. Adamopoulos, K.G.-D.E. Artificial neural networks and iterative linear algebra methods, Parallel Algor. Appl. 3 (1) (1994) 31-44.
[14] K.G. Margaritis, M. Adamopoulos, K. Solving linear systems by artificial neural network energy minimisation, Universily of Macedonia Annals (vol. XII),
1993, pp. 502-525.
[15] K. Levenberg, A method for the solution of certain problems in least squares, Quart. Appl. Math. 2 (1944) 164-168.
[16] G. Li, Z. Zeng, A neural network algorithm for solving nonlinear equation systems, Proceedings of 207 International Conference on Computational
Intelligence and Security, Los Alamito, USA, 2008. pp. 20-23.
[17] D. Luo, Z. Han, Solving nonlinear equation systems by neural networks, Proc. Int. Conf. Syst. Man Cybernet. 1 (1995) 858-862.
[18] A. Margaris, M. Adamopoulos, Solving nonlinear algebraic systems using artificial neural networks, Proceedings of the 10th International Conference
on Engineering Applications of Artificial Neural Networks, Thessaloniki, Greece, 2007. pp. 107-120.
[19] A. Margaris, K. Goulianas, Finding all roots of (2 x 2) nonlinear algebraic systems using backpropagation neural networks, Neural Comput. Appl.
21(2012) 891-904.
[20] D. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, IAM, J. Appl. Math 11 (1963) 431-441.
[21] K. Mathia, R. Saeks, Solving nonlinear equations using recurrent neural networks, World Congress on Neural Networks, Washington DC, USA, 1995.
[22] P. Mejzlik, A bisection method to find all solutions of a system of nonlinear equations, Proceedings of the Seventh International Conference on Domain
Decomposition, October 27-30, 1993, The Pennsylvania State University, pp.277-282.
[23] D. Mishra, P.K. Kalva, Modified hopfield neural network approach for solving nonlinear algebraic equations, Eng. Lett. 14 (2007) (1).
[24] M.W. Smiley, C. Chun, An algorithm for finding all solutions of a nonlinear system, J. Comput. Appl. Math. 137 (2) (2001) 293-315.
[25] T-F. Tsai, M.-H.L. Finding all solutions of systems of nonlinear equations with free variables, Eng. Optim. 39 (6) (2007) 649-659.
[26] V. Dolotin, A. Morozov, Introduction to Nonlinear Algebra, World Scientific Publishing Company, 2007.
[27] V.N. Kublanovskaya, V.N. Simonova, An approach to solving nonlinear algebraic systems 2, J. Math. Sci. (3) (1996) 1077-1092.
[28] W. Press, S. Teukolsky, W.B. Numerical Recipes in C — The Art of Scientific Programming, 2nd ed., Cambridge University Press, 1992.
[29] S.O. Yusuke Nakaya, Find all solutions of nonlinear systems of equations using linear programming with guaranteed accuracies, J. Univ. Comput. Sci. 4
(2) (1998) 171-177.
[30] G. Zhang, L. Bi, Existence of solutions for a nonlinear algebraic system, Discrete Dynamics in, Nature and Society, 2009.

	Finding all real roots of 3×3 nonlinear algebraic systems using neural networks
	1 Introduction
	2 Nonlinear algebraic systems
	3 Review of previous work
	4 ANNs as nonlinear system solvers
	5 The neural model for the ? complete nonlinear algebraic system
	6 Building the back propagation equations
	6.1 Forward pass
	6.2 Backward pass – estimation of the δ paramete
	6.3 Update of the synaptic weights

	7 Experimental results and comparison with other methods
	8 Conclusions and future work
	References

