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The objective of this research is the description of a feed-forward neural network capable
of solving nonlinear algebraic systems with polynomials equations. The basic features of
the proposed structure, include among other things, product units trained by the back-
propagation algorithm and a fixed input unit with a constant input of unity. The presented
theory is demonstrated by solving complete 3� 3 nonlinear algebraic system paradigms,
and the accuracy of the method is tested by comparing the experimental results produced
by the network, with the theoretical values of the systems roots.
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1. Introduction

A typical nonlinear algebraic system is defined as Fð~zÞ ¼ 0 with the mapping function F : Rn ! Rn ðn > 1Þ to be described
as an n-dimensional vector
F ¼ ½f1; f2; . . . ; fn�T ; ð1Þ
where fi : Rn ! R (i ¼ 1;2; . . . ;n). Generally speaking, there are no good methods for solving such systems: even in the simple
case of only two equations in the form f1ðz1; z2Þ ¼ 0 and f2ðz1; z2Þ ¼ 0, the estimation of the system roots is reduced to the
identification of the common points of the zero contours of the functions f1ðz1; z2Þ and f2ðz1; z2Þ. But this is a very difficult
task, since in general, these two functions have no relation to each other at all. In the general case of N nonlinear equations,
solving the system requires the identification of points that are mutually common to N unrelated zero-contour hyper-
surfaces each of dimension N � 1 [28].

2. Nonlinear algebraic systems

According to the basic principles of the nonlinear algebra [26], a complete nonlinear algebraic system of n polynomial
equations with n unknowns ~z ¼ ðz1; z2; . . . ; znÞ is identified completely by the number of equations n, and their degrees
ðs1; s2; . . . ; snÞ, it is expressed mathematically as
Fið~zÞ ¼
Xn

j1 ;j2 ;...;jsi

A
j1 j2 ...jsi
i zj1 zj2 . . . zjsi

¼ 0 ð2Þ
. All rights reserved.
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(i ¼ 1;2; . . . ;n), and it has one non-vanishing solution (i.e. at least one zj – 0) if and only if the equation
Rs1 ;s2 ;...sn A
j1j2 ...jsi
i

n o
¼ 0 ð3Þ
holds. In this equation, the function R is called the resultant and it is a straightforward generalization of the determinant of a
linear system. The resultant R is a polynomial of the coefficients of A of degree
ds1 ;s2 ;...;sn ¼ degARs1 ;s2 ;...;sn ¼
Xn

i¼1

Y
j–i

sj

 !
ð4Þ
When all degrees coincide, i.e. s1 ¼ s2 ¼ � � � ¼ sn ¼ s, the resultant Rnjs is reduced to a simple polynomial of degree
dnjs ¼ degARnjs ¼ nsn�1 and it is described completely by the values of the parameters n and s. It can be proven that the coef-
ficients of the matrix A, which is actually a tensor for n > 2, are not all independent each other. More specifically, for the
simple case s1 ¼ s2 ¼ � � � ¼ sn ¼ s, the matrix A is symmetric in the last s contra-variant indices and it contains only nMnjs

independent coefficients, with
Mnjs ¼
ðnþ s� 1Þ
ðn� 1Þ! s!

: ð5Þ
An interesting description concerning the existence of solution for a nonlinear algebraic system can be found in [30].
Even though the notion of the resultant has been defined for homogenous nonlinear equations, it can also describe non-

homogenous algebraic equations as well. In the general case, the resultant R, satisfies the nonlinear Cramer rule
Rs1 ;s2 ;...;snfA
ðkÞðZkÞg ¼ 0; ð6Þ
where Zk is the kth component of the solution of the no homogenous system, and AðkÞ is the kth column of the coefficient ma-
trix A.

3. Review of previous work

The solution of nonlinear algebraic systems is generally possible by using not analytical, but numerical algorithms. Be-
sides the well known fixed-point based methods, (quasi)-Newton and gradient descent methods, a well known class of such
algorithms is the ABS algorithms introduced in 1984 by Abaffy, Broyden, and Spedicato [10] to solve linear systems as well as
nonlinear equations and system of equations [11,4]. The basic function of the initial ABS algorithms is to solve a determined
or under-determined n�m linear system Az ¼ b (z 2 Rn; b 2 Rm;m 6 n) by using special matrices, known as Abaffians. The
choice of those matrices as well as the quantities used in their defining equations, determine particular sub-classes of the
ABS algorithms, the most important of them are the conjugate direction subclass, the orthogonality scaled subclass as well
as, the optimally stable subclass. The extension of the ABS methods for solving nonlinear algebraic systems is straightfor-
ward and it can be found in many sources such as [9,8]. It can be proven, that under appropriate conditions, the ABS methods
are locally convergent with a speed of Q-order two, while, the computational cost of one iteration is Oðn3Þ flops plus one
function and one Jacobian matrix evaluation. To save the cost of Jacobian matrix evaluations, Huang [5] introduced quasi-
Newton based ABS methods known as row update methods. These methods, do not require the a priori computation of
the Jacobian matrix, and therefore its computational cost is Oðn3Þ.

Galantai and Jeney [1] have proposed alternative methods for solving nonlinear systems of equations that are combina-
tions of the nonlinear ABS methods and quasi-Newton methods. Another class of methods has been proposed by Kublanovs-
kaya and Simonova [27] for estimating the roots of m nonlinear coupled algebraic equations with two unknowns k and l. In
their work, the nonlinear system under consideration is described by the algebraic equation Fðk;lÞ ¼ ½f1ðk;lÞ;
f2ðk;lÞ; . . . ; fmðk;lÞ�T ¼ 0 with the function fkðk;lÞ ðk ¼ 1; . . . ;mÞ to be a polynomial in the form
fkðk;lÞ ¼ ½aðkÞts lt þ � � � þ aðkÞ0s �k
s þ � � � þ ½aðkÞt0 lt þ � � � þ aðkÞ00 �: ð7Þ
In this equation, the coefficients aij (i ¼ 0;1; . . . ; t and j ¼ 0;1; . . . ; s) are, in general, complex numbers, while s and t are the
maximum degrees of polynomials in k and l respectively, found in Fðk;lÞ ¼ 0. The algorithms proposed by Kublanovskaya
and Simonova are capable of finding the zero-dimensional roots ðk�;l�Þ, i.e. the pairs of fixed numbers satisfying the non-
linear system, as well as the one-dimensional roots defined as ðk;lÞ ¼ ½uðlÞ;l� and ðk;lÞ ¼ ½k; ~uðkÞ� whose components
are functionally related.

The first method of Kublanovskaya and Simonova consists of two stages. At the first stage, the process passes from the
system Fðk;lÞ ¼ 0 to the spectral problem for a pencil Dðk;lÞ ¼ AðlÞ � kBðlÞ of polynomial matrices AðlÞ and BðlÞ, whose
zero-dimensional and one-dimensional eigenvalues coincide with the zero dimensional and one dimensional roots of the
nonlinear system under consideration. On the other hand, at the second stage, the spectral problem for Dðk;lÞ is solved,
i.e. all zero-dimensional eigenvalues of Dðk;lÞ as well as a regular polynomial matrix pencil whose spectrum gives all
one-dimensional eigenvalues of Dðk;lÞ are found. Regarding the second method, it is based to the factorization of Fðk;lÞ into
irreducible factors and to the estimation of the roots ðl; kÞ one after the other, since the resulting polynomials produced by
this factorization are polynomials of only one variable.
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Emiris, Mourrain, and Vrahatis [7] developed a method for the counting and identification of the roots of a nonlinear alge-
braic system based to the concept of topological degree and by using bisection techniques (for the application of those tech-
niques see also [22]). A method for solving such a system using linear programming techniques can be found in [29], and
another interesting method that uses evolutionary algorithms is described in [6]. There are many other methods concerning
this subject; some of them are described in [2,25,24,12]. In the concluding section, the proposed neural model will be com-
pared against some of those other methods such as the trust-region-dogleg [3], the trust-region-reflective [3] and the Leven-
berg–Marquardt algorithm [15,20], as well as the multivariate Newton–Raphson method with partial derivatives.

4. ANNs as nonlinear system solvers

Artificial neural networks (ANNs in short) have been used among other methods for solving linear algebra problems and
simple linear systems and equations [14,13] as well as nonlinear equations and systems of nonlinear equations; however,
they are not used so frequent as the methods described in the previous section, especially for the case of nonlinear systems.
Mathia and Saeks [21] used recurrent neural networks composed of linear Hopfield networks to solve nonlinear equations
which are approximated by a multilayer perceptron. Mishra and Kalra [23] used a modified Hopfield network with a properly
selected energy function to solve a nonlinear algebraic system of m equations with n unknowns. Hopfield neural networks
were also used by Luo and Han [17] to solve a nonlinear system of equations which in the previous stage has been trans-
formed to a kind of quadratic optimization. Finally, Li and Zeng [16] used the gradient descent rule with a variable step size
to solve nonlinear algebraic systems at very rapid convergence and with very high accuracy.

The main idea behind the proposed approach for solving a nonlinear algebraic system of p equations with p unknowns
[18], is to construct a network with p output neurons, with the desired output of the ‘th neuron ð1 6 ‘ 6 pÞ to be equal to
zero; in this way, the nonlinear algebraic system under consideration is simulated completely by the neural model. An effi-
cient approach to construct such a network is shown in Fig. 1 for the case of a complete 2� 2 nonlinear algebraic system
[19]. In this figure, the proposed model is composed of four layers, an input layer, with one summation unit with a constant
input equal to unity, a hidden layer of linear units that generate the linear terms x and y, a hidden layer of summation and
product units that generate all the terms of the left hand part of the system equations except the fixed term – namely, the
terms x; y; x2; xy and y2 – by using the appropriate activation function (for example, the activation function of the neuron
Fig. 1. The structure of the complete 2� 2 nonlinear algebraic system neural solver.
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producing the x2 term is the function f ðxÞ ¼ x2) and finally, an output layer of summation units whose total input is the
expression of the left hand part of the corresponding equation. These output neurons uses the hyperbolic tangent as the acti-
vation function and have an additional input from a bias unit, whose fixed weight is the constant term of the associated non-
linear equation. To simulate the system, the synaptic weights are configured in the way shown in the figure. It is not difficult
to note that the weights of synapses joining the neurons of the second layer to the neurons of the third layer, are fixed and
equal to unity, while the weights joining the summation and the product units of the third layer to the neurons of the fourth
(output) layer have been set to the fixed values of the coefficients of the system equations associated with the linear and
nonlinear terms provided by the neurons (it is clear that if the algebraic system is not complete but there are missing terms,
the corresponding synaptic weights are set to zero). The only variable-weight synapses are the two synapses that join the
input neuron with the two linear neurons of the first hidden layer. Since this network structure produces as output a zero
value, it is clear that a training operation with the traditional back propagation algorithm and the ½0 0�T as the desired output
vector, will assign to the weights of the two variable weight synapses, the components x and y of one of the system roots. The
training of this network with a lot of initial conditions is capable of identifying all roots of the traditional 2� 2 complete
nonlinear algebraic systems with four distinct roots as well as the basin of attraction for each one of them and the basin
of infinity that lead to a nonconverging behavior [19].
5. The neural model for the 3� 3 complete nonlinear algebraic system

The complete 3� 3 nonlinear algebraic system is defined as
Table 1
The stru

Laye

Laye
Laye
Laye
Laye

Laye
Fiðx1; x2; x3Þ ¼ ai;1x3
1 þ ai;2x3

2 þ ai;3x3
3 þ ai;4x2

1x2 þ ai;5x1x2
2 þ ai;6x2

1x3 þþai;7x1x2
3 þ ai;8x2

2x3 þ ai;9x2x2
3 þ ai;10x1x2x3

þ ai;11x1x2 þþai;12x1x3 þ ai;13x2x3 þ ai;14x2
1 þ ai;15x2

2 þ ai;16x2
3 þ ai;17x1 þ ai;18x2 þ ai;19x3 � ai;20 ¼ 0
ði ¼ 1;2;3Þ and it is a straightforward generalization of the 2� 2 complete nonlinear system studied in [19]. The neural
structure that solves this type of system is based to the approach described in the previous section, it is described in Table
1 and it is shown in Fig. 2. In complete accordance with the proposed design, there are full connections between two con-
secutive layers; however, for the sake of clarity, the figure shows only the connections with nonzero synaptic weighs. These
weights are defined as follows:
W12 ¼ W ð1Þ
12 W ð2Þ

12 W ð3Þ
12

h i
¼ x1x2x3½ �;

W23 ¼ fW ði;jÞ
2;3 g

j¼1;2;3;...;9
i¼1;2;3 ¼

1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1

2
64

3
75;

W34 ¼ fW ði;jÞ
3;4 g

j¼1;2;3;...;17;18;19
i¼1;2;...;9 ¼

1 0 0 1 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
666666666666666664

3
777777777777777775

;

cture of the neural solver for the 3� 3 complete nonlinear algebraic system.

r Neurons Neuron type Weight table

r 1 01 Summation W12ð1� 3Þ
r 2 03 Summation W23ð3� 9Þ
r 3 09 Summation W34ð9� 19Þ
r 4 19 Product & Summation W45ð19� 3Þ

Neurons 1,2,3,8,9,10,17,18,19
Summation units
Neurons 4,5,6,7,11,12,13,14,15,16
Product units

r 5 03 Summation Not available



Fig. 2. The structure of the complete 3� 3 nonlinear algebraic system neural solver. Since the back propagation algorithm requires full connections
between consecutive layers, the missing synapses are modeled as synapses with zero weight values. For the sake of simplicity, the parameters x1, x2 and x3

are denoted as x, y and z, respectively, while the parameters ai;20 (i ¼ 1;2;3) are denoted as a20, b20 and c20.
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W45 ¼

a1;17 a2;17 a3;17

a1;14 a2;14 a3;14

a1;1 a2;1 a3;1

a1;11 a2;11 a3;11

a1;4 a2;4 a3;4

a1;5 a2;5 a3;5

a1;10 a2;10 a3;10

a1;18 a2;18 a3;18

a1;15 a2;15 a3;15

a1;2 a2;2 a3;2

a1;13 a2;13 a3;13

a1;9 a2;9 a3;9

a1;8 a2;8 a3;8

a1;12 a2;12 a3;12

a1;7 a2;7 a3;7

a1;6 a2;6 a3;6

a1;19 a2;19 a3;19

a1;16 a2;16 a3;16

a1;3 a2;3 a3;3

2
666666666666666666666666666666666666666664

3
777777777777777777777777777777777777777775

:

The activation function for the neurons of the network structure are defined as follows:

� For the second layer: all neurons use the identity function; therefore we have
f ðiÞ2 ðtÞ ¼ t; i ¼ 1;2;3:
� For the third layer: the activation functions of the nine neurons are defined as follows:
f 3 ¼ f ð1Þ3 f ð2Þ3 f ð3Þ3 f ð4Þ3 f ð5Þ3 f ð6Þ3 f ð7Þ3 f ð8Þ3 f ð9Þ3

h i
¼ t t2 t3 t t2 t3 t t2 t3
� �

:
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� For the fourth layer: all the neurons use the identity function, namely
f ðiÞ4 ðtÞ ¼ t; i ¼ 1;2;3; . . . ;17;18;19:
� For the fifth (output) layer: all the neurons use the hyperbolic tangent function, namely
f ðiÞ5 ðtÞ ¼ tanhðtÞ; i ¼ 1;2;3:
6. Building the back propagation equations

By following the traditional back propagation approach, the equation for training the neural network are constructed as
follows:

6.1. Forward pass

The input to the three neurons of the second layer are estimated as
tðiÞ2 ¼W ðiÞ
12 ¼ xi; i ¼ 1;2;3
while the outputs produced by them have the values
mðiÞ2 ¼ f ðiÞ2 ðt
ðiÞ
2 Þ ¼ f ðiÞ2 ðxiÞ ¼ xi; i ¼ 1;2;3:
These outputs are sent as inputs to the neurons of the third layer, whose total input is thus given by the equation
tðiÞ3 ¼
X3

j¼1

W ðj;iÞ
23 mðjÞ2 ; j ¼ 1;2;3;4;5;6;7;8;9
or in expanded form
tð1Þ3 ¼W ð1;1Þ
23 mð1Þ2 þW ð2;1Þ

23 mð2Þ2 þW ð3;1Þ
23 mð3Þ2 ¼ x1;

tð2Þ3 ¼W ð1;2Þ
23 mð1Þ2 þW ð2;2Þ

23 mð2Þ2 þW ð3;2Þ
23 mð3Þ2 ¼ x1;

tð3Þ3 ¼W ð1;3Þ
23 mð1Þ2 þW ð2;3Þ

23 mð2Þ2 þW ð3;3Þ
23 mð3Þ2 ¼ x1;

tð4Þ3 ¼W ð1;4Þ
23 mð1Þ2 þW ð2;4Þ

23 mð2Þ2 þW ð3;4Þ
23 mð3Þ2 ¼ x2;

tð5Þ3 ¼W ð1;5Þ
23 mð1Þ2 þW ð2;5Þ

23 mð2Þ2 þW ð3;5Þ
23 mð3Þ2 ¼ x2;

tð6Þ3 ¼W ð1;6Þ
23 mð1Þ2 þW ð2;6Þ

23 mð2Þ2 þW ð3;6Þ
23 mð3Þ2 ¼ x2;

tð7Þ3 ¼W ð1;7Þ
23 mð1Þ2 þW ð2;7Þ

23 mð2Þ2 þW ð3;7Þ
23 mð3Þ2 ¼ x3;

tð8Þ3 ¼W ð1;8Þ
23 mð1Þ2 þW ð2;8Þ

23 mð2Þ2 þW ð3;8Þ
23 mð3Þ2 ¼ x3;

tð9Þ3 ¼W ð1;9Þ
23 mð1Þ2 þW ð2;9Þ

23 mð2Þ2 þW ð3;9Þ
23 mð3Þ2 ¼ x3:
On the other hand, the outputs of the neurons of the third layer are estimated as
mð1Þ3 ¼ f ð1Þ3 ðt
ð1Þ
3 Þ ¼ f ð1Þ3 ðxÞ ¼ x1;

mð2Þ3 ¼ f ð2Þ3 ðt
ð2Þ
3 Þ ¼ f ð2Þ3 ðxÞ ¼ x2

1;

mð3Þ3 ¼ f ð3Þ3 ðt
ð3Þ
3 Þ ¼ f ð3Þ3 ðxÞ ¼ x3

1;

mð4Þ3 ¼ f ð4Þ3 ðt
ð4Þ
3 Þ ¼ f ð4Þ3 ðyÞ ¼ x2;

mð5Þ3 ¼ f ð5Þ3 ðt
ð5Þ
3 Þ ¼ f ð5Þ3 ðyÞ ¼ x2

2;

mð6Þ3 ¼ f ð6Þ3 ðt
ð6Þ
3 Þ ¼ f ð6Þ3 ðyÞ ¼ x3

2;

mð7Þ3 ¼ f ð7Þ3 ðt
ð7Þ
3 Þ ¼ f ð7Þ3 ðzÞ ¼ x3;

mð8Þ3 ¼ f ð8Þ3 ðt
ð8Þ
3 Þ ¼ f ð8Þ3 ðzÞ ¼ x2

3;

mð9Þ3 ¼ f ð9Þ3 ðt
ð9Þ
3 Þ ¼ f ð9Þ3 ðzÞ ¼ x3

3:
These outputs are sent as inputs to the neurons of the fourth layer. For the summation neurons, their total input is estimated
as
tðiÞ4 ¼
X9

j¼1

W ðj;iÞ
34 mðjÞ3 ; i ¼ 1;2;3;8;9;10;17;18;19
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or in expanded form
tð1Þ4 ¼
X9

j¼1

W ðj;1Þ
34 mðjÞ3 ¼ ðW

ð1;1Þ
34 mð1Þ3 Þ ¼ x1;

tð2Þ4 ¼
X9

j¼1

W ðj;2Þ
34 mðjÞ3 ¼ ðW

ð2;2Þ
34 mð2Þ3 Þ ¼ x2

1;

tð3Þ4 ¼
X9

j¼1

W ðj;3Þ
34 mðjÞ3 ¼ ðW

ð3;3Þ
34 mð3Þ3 Þ ¼ x3

1;

tð8Þ4 ¼
X9

j¼1

W ðj;8Þ
34 mðjÞ3 ¼ ðW

ð4;8Þ
34 mð4Þ3 Þ ¼ x2;

tð9Þ4 ¼
X9

j¼1

W ðj;9Þ
34 mðjÞ3 ¼ ðW

ð5;9Þ
34 mð5Þ3 Þ ¼ x2

2;

tð10Þ
4 ¼

X9

j¼1

W ðj;10Þ
34 mðjÞ3 ¼ ðW

ð6;10Þ
34 mð6Þ3 Þ ¼ x3

2;

tð17Þ
4 ¼

X9

j¼1

W ðj;17Þ
34 mðjÞ3 ¼ ðW

ð7;17Þ
34 mð7Þ3 Þ ¼ x3;

tð18Þ
4 ¼

X9

j¼1

W ðj;18Þ
34 mðjÞ3 ¼ ðW

ð8;18Þ
34 mð8Þ3 Þ ¼ x2

3:

tð19Þ
4 ¼

X9

j¼1

W ðj;19Þ
34 mðjÞ3 ¼ ðW

ð9;19Þ
34 mð9Þ3 Þ ¼ x3

3

while the outputs of the product units of this fourth layer are estimated as
tðiÞ4 ¼
Y
j2Si

W ðj;iÞ
34 mðjÞ3 ; i ¼ 4;5;6;7;11;12;13;14;15;16;
where Si is the set of indices of the neurons of the third layer that are connected to the ith neuron of the fourth layer
(i ¼ 4;5;6;7;11;12;13;14;15;16). If we expand this equation we get a set of equations in the form
tð4Þ4 ¼ ðW
ð1;4Þ
34 mð1Þ3 ÞðW

ð4;4Þ
34 mð4Þ3 Þ ¼ x1x2;

tð5Þ4 ¼ ðW
ð2;5Þ
34 mð2Þ3 ÞðW

ð4;5Þ
34 mð4Þ3 Þ ¼ x2

1x2;

tð6Þ4 ¼ ðW
ð1;6Þ
34 mð1Þ3 ÞðW

ð5;6Þ
34 mð5Þ3 Þ ¼ x1x2

2;

tð7Þ4 ¼ ðW
ð1;7Þ
34 mð1Þ3 ÞðW

ð4;7Þ
34 mð4Þ3 ÞðW

ð7;7Þ
34 mð7Þ3 Þ ¼ x1x2x3;

tð11Þ
4 ¼ ðW ð4;11Þ

34 mð4Þ3 ÞðW
ð7;11Þ
34 mð7Þ3 Þ ¼ x2x3;

tð12Þ
4 ¼ ðW ð4;12Þ

34 mð4Þ3 ÞðW
ð8;12Þ
34 mð8Þ3 Þ ¼ x2x2

3;

tð13Þ
4 ¼ ðW ð5;13Þ

34 mð5Þ3 ÞðW
ð7;13Þ
34 mð7Þ3 Þ ¼ x2

2x3;

tð14Þ
4 ¼ ðW ð1;14Þ

34 mð1Þ3 ÞðW
ð7;14Þ
34 mð7Þ3 Þ ¼ x1x3;

tð15Þ
4 ¼ ðW ð1;15Þ

34 mð1Þ3 ÞðW
ð8;15Þ
34 mð8Þ3 Þ ¼ x1x2

3;

tð16Þ
4 ¼ ðW ð2;16Þ

34 mð2Þ3 ÞðW
ð7;16Þ
34 mð7Þ3 Þ ¼ x2

1x3
with the outputs of the fourth layer estimated as
mð1Þ4 ¼ f ð1Þ4 ðt
ð1Þ
4 Þ ¼ f ð1Þ4 ðxÞ ¼ x1;

mð2Þ4 ¼ f ð2Þ4 ðt
ð2Þ
4 Þ ¼ f ð2Þ4 ðx2Þ ¼ x2

1;

mð3Þ4 ¼ f ð3Þ4 ðt
ð3Þ
4 Þ ¼ f ð3Þ4 ðx3Þ ¼ x3

1;

mð4Þ4 ¼ f ð4Þ4 ðt
ð4Þ
4 Þ ¼ f ð4Þ4 ðxyÞ ¼ x1x2;

mð5Þ4 ¼ f ð5Þ4 ðt
ð5Þ
4 Þ ¼ f ð5Þ4 ðx2yÞ ¼ x2

1x2;

mð6Þ4 ¼ f ð6Þ4 ðt
ð6Þ
4 Þ ¼ f ð6Þ4 ðxy2Þ ¼ x1x2

2;

mð7Þ4 ¼ f ð7Þ4 ðt
ð7Þ
4 Þ ¼ f ð7Þ4 ðxyzÞ ¼ x1x2x3;

mð8Þ4 ¼ f ð8Þ4 ðt
ð8Þ
4 Þ ¼ f ð8Þ4 ðyÞ ¼ x2;
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mð9Þ4 ¼ f ð9Þ4 ðt
ð9Þ
4 Þ ¼ f ð9Þ4 ðy2Þ ¼ x2

2;

mð10Þ
4 ¼ f ð10Þ

4 ðtð10Þ
4 Þ ¼ f ð10Þ

4 ðy3Þ ¼ x3
2;

mð11Þ
4 ¼ f ð11Þ

4 ðtð11Þ
4 Þ ¼ f ð11Þ

4 ðyzÞ ¼ x2x3;

mð12Þ
4 ¼ f ð12Þ

4 ðtð12Þ
4 Þ ¼ f ð12Þ

4 ðyz2Þ ¼ x2x2
3;

mð13Þ
4 ¼ f ð13Þ

4 ðtð13Þ
4 Þ ¼ f ð13Þ

4 ðy2zÞ ¼ x2
2x3;

mð14Þ
4 ¼ f ð14Þ

4 ðtð14Þ
4 Þ ¼ f ð14Þ

4 ðxzÞ ¼ x1x3;

mð15Þ ¼ f ð15Þðtð15ÞÞ ¼ f ð15Þðxz2Þ ¼ x1x2;
4 4 4 4 3

mð16Þ
4 ¼ f ð16Þ

4 ðtð16Þ
4 Þ ¼ f ð16Þ

4 ðx2zÞ ¼ x2
1x3;

mð17Þ
4 ¼ f ð17Þ

4 ðtð17Þ
4 Þ ¼ f ð17Þ

4 ðzÞ ¼ x3;

mð18Þ
4 ¼ f ð18Þ

4 ðtð18Þ
4 Þ ¼ f ð18Þ

4 ðz2Þ ¼ x2
3;

mð19Þ
4 ¼ f ð19Þ

4 ðtð19Þ
4 Þ ¼ f ð19Þ

4 ðz3Þ ¼ x3
3:
Finally, the total input to the three summation neurons of the output layer is estimated as
tð1Þ5 ¼
X19

j¼1

W ðj;1Þ
45 mðjÞ4 ¼ a1;17x1 þ a1;14x2

1 þ a1;1x3
1 þ a1;11x1x2 þ a1;4x2

1x2 þ a1;5x1x2
2 þ a1;10x1x2x3 þ a1;18x2 þ a1;15x2

2

þ a1;2x3
2 þ a1;13x2x3 þ a1;9x2x2

3 þ a1;8x2
2x3 þ a1;12x1x3 þ a1;7x1x2

3 þ a1;6x2
2x3 þ a1;19x3 þ a1;16x2

3 þ a1;3x3
3 � a1;20

¼ F1ðx1; x2; x3Þ;

tð2Þ5 ¼
X19

j¼1

W ðj;2Þ
45 mðjÞ4 ¼ a2;17x1 þ a2;14x2

1 þ a2;1x3
1a2;11x1x2 þ a2;4x2

1x2 þ a2;5x1x2
2 þ a2;10x1x2x3 þ a2;18x2 þ a2;15x2

2 þ a2;2x3
2

þ a2;13x2x3 þ a2;9x2x2
3 þ a2;8x2

2x3 þ a2;12x1x3 þ a2;7x1x2
3 þ a2;6x2

2x3 þ a2;19x3 þ a2;16x2
3 þ a2;3x3

3 � a2;20 ¼ F2ðx1; x2; x3Þ

tð3Þ5 ¼
X19

j¼1

W ðj;3Þ
45 mðjÞ4 ¼ a3;17x1 þ a3;14x2

1 þ a3;1x3
1 þ a3;11x1x2 þ a3;4x2

1x2 þ a3;5x1x2
2 þ a3;10x1x2x3 þ a3;18x2 þ a3;15x2

2

þ a3;2x3
2 þ a3;13x2x3 þ a3;9x2x2

3 þ a3;8x2
2x3 þ a3;12x1x3 þ a3;7x1x2

3 þ a3;6x2
2x3 þ a3;19x3

þ a3;16x2
3 þ a3;3x3

3 � a3;20 ¼ F3ðx1; x2; x3Þ
while the output produced by them and it is the real output of the neural network is given by the equations
mð1Þ5 � o1 ¼ tanh½tð1Þ5 � ¼ tanh½F1ðx1; x2; x3Þ� ¼ f ðF1Þ;
mð2Þ5 � o2 ¼ tanh½tð2Þ5 � ¼ tanh½F2ðx1; x2; x3Þ� ¼ f ðF2Þ;
mð3Þ5 � o3 ¼ tanh½tð3Þ5 � ¼ tanh½F3ðx1; x2; x3Þ� ¼ f ðF3Þ;
where for the sake of brevity we define f ðxÞ ¼ tanhðxÞ and use the convention Fi ¼ Fiðx; y; zÞ ði ¼ 1;2;3Þ.

6.2. Backward pass – estimation of the d parameters

In this stage we use the vectors
d5 ¼ d
ð1Þ
5 d

ð2Þ
5 d

ð3Þ
5

h i
;

d4 ¼ d
ð1Þ
4 d

ð2Þ
4 d

ð3Þ
4 � � � � � � � � � d

ð17Þ
4 d

ð18Þ
4 d

ð19Þ
4

h i
;

d3 ¼ d
ð1Þ
3 d

ð2Þ
3 d

ð3Þ
3 d

ð4Þ
3 d

ð5Þ
3 d

ð6Þ
3 d

ð7Þ
3 d

ð8Þ
3 d

ð9Þ
3

h i
;

d2 ¼ d
ð1Þ
2 d

ð2Þ
2 d

ð3Þ
2

h i

to denote the d values of the fifth, the fourth, the third and the second layer, respectively.

Since the desired output of the neural network are the values d1 ¼ d2 ¼ d3 ¼ 0 it can be easily seen that
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d
ð1Þ
5 ¼ ðd1 � o1Þf ð1Þ

0

5 ðt
ð1Þ
5 Þ ¼ �o1f 0ðF1Þ ¼ �f ðF1Þf1� f 2ðF1Þg;

d
ð2Þ
5 ¼ ðd2 � o2Þf ð2Þ

0

5 ðt
ð2Þ
5 Þ ¼ �o2f 0ðF2Þ ¼ �f ðF2Þf1� f 2ðF2Þg;

d
ð3Þ
5 ¼ ðd3 � o3Þf ð1Þ

0

5 ðt
ð3Þ
5 Þ ¼ �o3f 0ðF1Þ ¼ �f ðF3Þf1� f 2ðF3Þg:
Having estimated the components of the d5 vector, we can now estimate the components of the d4 vector (namely the delta
values of the fourth layer) by using the equation
d
ðkÞxi
4 ¼

X3

j¼1

W ðk;jÞ
45 d

ðjÞ
5

 !
nðkÞxi

4 ; k ¼ 1; . . . ;19; where nðkÞxi
4 ¼ @f ðkÞ4

@tðkÞ4

@tðkÞ4

@xi
:

Since these neurons produce nonlinear terms we have generally to estimate more than one delta values for each one them,
and for each independent variable participating to the nonlinear term they produce.

In the above equation, there are many function derivatives with respect to x; y and z; these derivatives are estimated as

� nðkÞxi
4 ¼ 1 for ðk; iÞ ¼ fð1;1Þ; ð8;2Þ; ð17;3Þg with n

ðkÞxj
4 ¼ 0 for j – i.

� nðkÞxi
4 ¼ 2xi for ðk; iÞ ¼ fð2;1Þ; ð9;2Þ; ð18;3Þg with n

ðkÞxj
4 ¼ 0 for j – i.

� nðkÞxi
4 ¼ 3x2

i for ðk; iÞ ¼ fð3;1Þ; ð10;2Þ; ð19;3Þg with n
ðkÞxj
4 ¼ 0 for j – i.

� nð7Þxi
4 ¼ xjx‘ for ði; j; ‘Þ ¼ fð1;2;3Þ; ð2;1;3Þ; ð3;1;2Þg.

� nðkÞxi
4 ¼ xj for ðk; i; jÞ ¼ fð4;1;2Þ; ð4;2;1Þ, ð11;2;3Þ; ð11;3;2Þ; ð14;1;3Þ; ð14;3;1Þg.

� nðkÞxi
4 ¼ 0 for ðk; iÞ ¼ fð4;3Þ; ð11;1Þ; ð14;2Þg.

� nðkÞxi
4 ¼ x2

j for ðk; i; jÞ ¼ fð5;2;1Þ; ð6;1;2Þ, ð12;2;3Þ; ð13;3;2Þ; ð15;1;3Þ; ð16;3;1Þg.
� nðkÞxi

4 ¼ 2xixj for ðk; i; jÞ ¼ fð5;1;2Þ; ð6;2;1Þ, ð12;3;2Þ; ð13;2;3Þ; ð15;3;1Þ; ð16;1;3Þg.
� nðkÞxi

4 ¼ 0 for ðk; iÞ ¼ fð5;3Þ; ð6;3Þ, ð12;1Þ; ð13;1Þ; ð15;2Þ; ð16;2Þg.

Based on the above expressions,we get the results
d
ð1Þx1
4 ¼

X3

j¼1

aj;17d
ðjÞ
5 ; d

ð1Þx2
4 ¼ 0;

d
ð1Þx3
4 ¼ 0; d

ð2Þx1
4 ¼ 2x1

X3

j¼1

aj;14d
ðjÞ
5 ;

d
ð2Þx2
4 ¼ 0; d

ð2Þx3
4 ¼ 0;

d
ð3Þx1
4 ¼ 3x2

1

X3

j¼1

aj;1d
ðjÞ
5 ; d

ð3Þx2
4 ¼ 0;

d
ð3Þx3
4 ¼ 0; d

ð4Þx1
4 ¼ x2

X3

j¼1

aj;11d
ðjÞ
5 ;

d
ð4Þx2
4 ¼ x1

X3

j¼1

aj;11d
ðjÞ
5 ; d

ð4Þx3
4 ¼ 0;

d
ð5Þx1
4 ¼ 2x1x2

X3

j¼1

aj;4d
ðjÞ
5 ; d

ð5Þx2
4 ¼ x2

1

X3

j¼1

aj;4d
ðjÞ
5 ;

d
ð5Þx3
4 ¼ 0; d

ð6Þx1
4 ¼ x2

2

X3

j¼1

aj;5d
ðjÞ
5 ;

d
ð6Þx2
4 ¼ 2x1x2

X3

j¼1

aj;5d
ðjÞ
5 ; d

ð6Þx3
4 ¼ 0;

d
ð7Þx1
4 ¼ x2x3

X3

j¼1

aj;10d
ðjÞ
5 ; d

ð7Þx2
4 ¼ x1x3

X3

j¼1

aj;10d
ðjÞ
5 ;
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d
ð7Þx3
4 ¼ x1x2

X3

j¼1

aj;10d
ðjÞ
5 ; d

ð8Þx1
4 ¼ 0;

d
ð8Þx2
4 ¼

X3

j¼1

aj;18d
ðjÞ
5 ; d

ð8Þx3
4 ¼ 0;

d
ð9Þx1
4 ¼ 0; d

ð9Þx2
4 ¼ 2x2

X3

j¼1

aj;15d
ðjÞ
5 ;

d
ð9Þx3
4 ¼ 0; d

ð10Þx1
4 ¼ 0;

d
ð10Þx2
4 ¼ 3x2

2

X3

j¼1

aj;2d
ðjÞ
5 ; d

ð10Þx3
4 ¼ 0;

d
ð11Þx1
4 ¼ 0; d

ð11Þx2
4 ¼ x3

X3

j¼1

aj;13d
ðjÞ
5 ;

d
ð11Þx3
4 ¼ x2

X3

j¼1

aj;13d
ðjÞ
5 ; d

ð12Þx1
4 ¼ 0;

d
ð12Þx2
4 ¼ x2

3

X3

j¼1

aj;9d
ðjÞ
5 ; d

ð12Þx3
4 ¼ 2x2x3

X3

j¼1

aj;9d
ðjÞ
5 ;

d
ð13Þx1
4 ¼ 0; d

ð13Þx2
4 ¼ 2x2x3

X3

j¼1

aj;8d
ðjÞ
5 ;

d
ð14Þx1
4 ¼ x3

X3

j¼1

aj;12d
ðjÞ
5 ; d

ð14Þx2
4 ¼ 0;

d
ð15Þx1
4 ¼ x2

3

X3

j¼1

aj;7d
ðjÞ
5 ; d

ð15Þx2
4 ¼ 0;

d
ð16Þx1
4 ¼ 2x1x3

X3

j¼1

aj;6d
ðjÞ
5 ; d

ð16Þx2
4 ¼ 0;

d
ð17Þx1
4 ¼ 0; d

ð17Þx2
4 ¼ 0;

d
ð18Þx1
4 ¼ 0; d

ð18Þx2
4 ¼ 0;

d
ð19Þx1
4 ¼ 0; d

ð197Þx2
4 ¼ 0;

d
ð13Þx3
4 ¼ x2

2

X3

j¼1

aj;8d
ðjÞ
5 ;

d
ð14Þx3
4 ¼ x1

X3

j¼1

aj;12d
ðjÞ
5 ;

d
ð15Þx3
4 ¼ 2x1x3

X3

j¼1

aj;7d
ðjÞ
5 ;
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d
ð16Þx3
4 ¼ x2

1

X3

j¼1

aj;6d
ðjÞ
5 ;

d
ð17Þx3
4 ¼

X3

j¼1

aj;19d
ðjÞ
5 ;

d
ð18Þx3
4 ¼ 2x3

X3

j¼1

aj;16d
ðjÞ
5 ;

d
ð19Þx3
4 ¼ 3x2

3

X3

j¼1

aj;3d
ðjÞ
5 :
In the next step we use these values to estimate the parameters d
ðiÞ
3 (i ¼ 1;2;3; . . . ;9) via the expression
d
ðiÞ
3 ¼

X19

j¼1

W ði;jÞ
34 d

ðiÞx1
4 ; i ¼ 1;2;3;

X19

j¼1

W ði;jÞ
34 d

ðiÞx2
4 ; i ¼ 4;5;6;

X19

j¼1

W ði;jÞ
34 d

ðiÞx3
4 ; i ¼ 7;8;9:

8>>>>>>>>>>><
>>>>>>>>>>>:
The results are the following
d
ð1Þ
3 ¼ d

ð1Þx1
4 þ d

ð4Þx1
4 þ d

ð6Þx1
4 þ d

ð7Þx1
4 þ d

ð14Þx1
4 þ d

ð15Þx1
4

¼
X3

j¼1

aj;17d
ðjÞ
5 þ x2

X3

j¼1

aj;11d
ðjÞ
5 þ x2

X3

j¼1

aj;11d
ðjÞ
5 þ x2

2

X3

j¼1

aj;5d
ðjÞ
5 þ x2x3

X3

j¼1

aj;10d
ðjÞ
5 þ x3

X3

j¼1

aj;12d
ðjÞ
5 þ x2

3

X3

j¼1

aj;7d
ðjÞ
5 ;

d
ð2Þ
3 ¼ d

ð2Þx1
4 þ d

ð5Þx1
4 þ d

ð16Þx1
4 ¼ 2x1

X3

j¼1

aj;14d
ðjÞ
5 þ 2x1x2

X3

j¼1

aj;4d
ðjÞ
5 þ 2x1x3

X3

j¼1

aj;6d
ðjÞ
5

d
ð3Þ
3 ¼ d

ð3Þx1
4 ¼ 3x2

1

X3

j¼1

aj;1d
ðjÞ
5

d
ð4Þ
3 ¼ d

ð4Þx2
4 þ d

ð5Þx2
4 þ d

ð7Þx2
4 þ d

ð8Þx2
4 þ d

ð11Þx2
4 þ d

ð12Þx2
4

¼ x1

X3

j¼1

aj;11d
ðjÞ
5 þ x2

1

X3

j¼1

aj;4d
ðjÞ
5 þ x1x3

X3

j¼1

aj;10d
ðjÞ
5 þ

X3

j¼1

aj;18d
ðjÞ
5 þ x3

X3

j¼1

aj;13d
ðjÞ
5 þ x2

3

X3

j¼1

aj;9d
ðjÞ
5 ;

d
ð5Þ
3 ¼ d

ð6Þx2
4 þ d

ð9Þx2
4 þ d

ð13Þx2
4 ¼ 2x1x2

X3

j¼1

aj;5d
ðjÞ
5 þ 2x2

X3

j¼1

aj;15d
ðjÞ
5 þ 2x2x3

X3

j¼1

aj;8d
ðjÞ
5 ;

d
ð6Þ
3 ¼ d

ð10Þx2
4 ¼ 3x2

2

X3

j¼1

aj;2d
ðjÞ
5

d
ð7Þ
3 ¼ d

ð7Þx3
4 þ d

ð11Þx3
4 þ d

ð13Þx3
4 þ d

ð14Þx3
4 þ d

ð16Þx3
4 þ d

ð17Þx3
4

¼ x1x2

X3

j¼1

aj;10d
ðjÞ
5 þ x2

X3

j¼1

aj;13d
ðjÞ
5 þ x2

2

X3

j¼1

aj;8d
ðjÞ
5 þ x1

X3

j¼1

aj;12d
ðjÞ
5 þ x2

1

X3

j¼1

aj;6d
ðjÞ
5 þ

X3

j¼1

aj;19d
ðjÞ
5 ;

d
ð8Þ
3 ¼ d

ð12Þx3
4 þ d

ð15Þx3
4 þ d

ð18Þx3
4 ¼ 2x2x3

X3

j¼1

aj;9d
ðjÞ
5 þ 2x1x3

X3

j¼1

aj;7d
ðjÞ
5 þ 2x3

X3

j¼1

aj;16d
ðjÞ
5

d
ð9Þ
3 ¼ d

ð19Þx3
4 ¼ 3x2

3

X3

j¼1

aj;3d
ðjÞ
5 :
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Finally, the values of d
ðiÞ
2 ði ¼ 1;2;3Þ are estimated via the equation
d
ðiÞ
2 ¼

X9

j¼1

W ði;jÞ
23 d

ðiÞ
3 ði ¼ 1;2;3Þ
and the results are
d
ð1Þ
2 ¼ d

ð1Þ
3 þ d

ð2Þ
3 þ d

ð3Þ
3 ¼ 3x2

1

X3

j¼1

aj;1 þ 2x1x2

X3

j¼1

aj;4 þ x2
2

X3

j¼1

aj;5 þ 2x1x3

X3

j¼1

aj;6 þ x2
3

X3

j¼1

aj;7 þ x2x3

X3

j¼1

aj;10

 

þ x2

X3

j¼1

aj;11 þ x3

X3

j¼1

aj;12 þ 2x1

X3

j¼1

aj;14 þ
X3

j¼1

aj;17

!
d
ðjÞ
5 ¼

X3

j¼1

@Fjðx1; x2; x3Þ
@x1

� �
d
ðjÞ
5 ;

d
ð2Þ
2 ¼ d

ð4Þ
3 þ d

ð5Þ
3 þ d

ð6Þ
3 ¼ 3x2

2

X3

j¼1

aj;2 þ x2
1

X3

j¼1

aj;4 þ 2x1x2

X3

j¼1

aj;5 þ 2x2x3

X3

j¼1

aj;8 þ x2
3

X3

j¼1

aj;9 þ x1

X3

j¼1

aj;11

 

þ x3

X3

j¼1

aj;13 þ 2x2

X3

j¼1

aj;15 þ
X3

j¼1

aj;18 þ x1x3

X3

j¼1

aj;10

!
d
ðjÞ
5 ¼

X3

j¼1

@Fjðx1; x2; x3Þ
@x2

� �
d
ðjÞ
5 ;

d
ð3Þ
2 ¼ d

ð7Þ
3 þ d

ð8Þ
3 þ d

ð9Þ
3 ¼ 3x2

3

X3

j¼1

aj;3 þ x2
1

X3

j¼1

aj;6 þ 2x1x3

X3

j¼1

aj;7 þ x2
2

X3

j¼1

aj;8 þ 2x2x3

X3

j¼1

aj;9 þ x1x2

X3

j¼1

aj;10

 

þ x1

X3

j¼1

aj;12 þ x2

X3

j¼1

aj;13 þ 2x3

X3

j¼1

aj;16 þ
X3

j¼1

aj;19

!
d
ðjÞ
5 ¼

X3

j¼1

@Fjðx1; x2; x3Þ
@x3

� �
d
ðjÞ
5 :
6.3. Update of the synaptic weights

Proof. According to the back propagation algorithm, the update of the two variable weights W ðiÞ
12 ¼ xi ði ¼ 1;2;3Þ is

performed as
fW ðiÞ
12g

ðkþ1Þ ¼ fW ðiÞ
12g

ðkÞ þ bd
ðiÞ
2 ¼ fW

ðiÞ
12g

ðkÞ þ b
X3

j¼1

@Fj

@xi
d
ðjÞ
5

or equivalently, as
fW ðiÞ
12g

ðkþ1Þ ¼ fW ðiÞ
12g

ðkÞ � b
X3

j¼1

f ðFjÞð1� f 2ðFjÞÞ
@Fj

@W ðiÞ
12

;

where we used the expressions for the d
ðiÞ
2 and d

ðjÞ
5 parameters.

From the definition of the mean square error of the back propagation algorithm
E ¼ 1
2

X3

j¼1

ðdj � ojÞ2 ¼
1
2

X3

j¼1

o2
j ¼

1
2

X3

j¼1

f 2ðFjÞ
it can be easily seen that
@E

@W ðiÞ
12

¼
X3

j¼1

f ðFjÞf 0ðFjÞ
@Fj

@W ðiÞ
12

¼
X3

j¼1

f ðFjÞð1� f 2ðFjÞÞ
@Fj

@W ðiÞ
12
and therefore the weight update equation gets the form
fW ðiÞ
12g

ðkþ1Þ ¼ fW ðiÞ
12g

ðkÞ � b
@E

@W ðiÞ
12
that completes the proof. h
7. Experimental results and comparison with other methods

To test the validity of the neural model and evaluate its precision and performance, typical 3� 3 nonlinear systems were
constructed and solved using the network described above. The results and the analysis of the associated simulations, are
presented below.
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Example 1. The first system we present has eight real roots and it consists of the following equations:
F1ðx1; x2; x3Þ ¼ x3
1 þ x3

2 þ x3
3 � x2

1x2 þ x1x2
2 � x2

2x3 þ x1x2x3 � x1 � x2 � x3 ¼ 0;

F2ðx1; x2; x3Þ ¼ 0:5x3
1 þ 0:5x3

2 þ 0:5x3
3 � x2

1x2 þ x1x2
2 � x2

2x3 þ x1x2x3 � 0:5x2
1 � 0:5x2

2

� 0:5x2
3 � 0:5x1 � 0:5x2 � 0:5x3 þ 1:5 ¼ 0;

F3ðx1; x2; x3Þ ¼ x3
1 þ x3

2 þ x3
3 þ x2

1x2 � x1x2
2 þ x2

2x3 � x1x2x3 þ x2
1 þ x2

2 þ x2
3 � x1 � x2 � x3 � 3 ¼ 0
The solution of this system by means of symbolic packages such as Mathematica, reveals the existence of 8 discrete roots
with values

1. ðx1; x2; x3Þ ¼ ð�1;�1;�1Þ.
2. ðx1; x2; x3Þ ¼ ð�1;�1;þ1Þ.
3. ðx1; x2; x3Þ ¼ ð�1;þ1;�1Þ.
4. ðx1; x2; x3Þ ¼ ðþ1;�1;þ1Þ.
5. ðx1; x2; x3Þ ¼ ðþ1;þ1;�1Þ.
6. ðx1; x2; x3Þ ¼ ðþ1;þ1;þ1Þ.
7. ðx1; x2; x3Þ ¼ ð�1:224744;�2E� 8;1:224744Þ.
8. ðx1; x2; x3Þ ¼ ð1:224744;2E� 8;�1:224744Þ.

To solve the above system, the neural model run many times with different initial conditions in the intervals
�3 6 x1 6 2:5, �3 6 x2 6 1:4, and �3 6 x3 6 0:5 with a variation step Dx1 ¼ Dx2 ¼ Dx3 ¼ 0:1. Therefore, the model run
207375 times to identify the basin of attraction of each root and to calculate the percentage of the initial conditions
associated with each root.

The operation of the neural network was simulated in MATLAB, and the components x1, x2 and x3 of each root were
estimated by using recurrently the last equation of the previous section. The learning rate for the back propagation algorithm
was b ¼ 0:005. Since the speed of convergence was too fast, the maximum number of iterations was set to N ¼ 10000;
therefore after 10000 iterations, the system was characterized as nonconvergent if it was unable to reach a root, with the
process to move to the next point of initial conditions. For each such point, the network either reached one of the eight
system roots (it is important to say that the network was able to identify all roots) or it was unable to estimate one of those
roots. The basin of attraction for the eight roots as well as the number of points of that basin are depicted graphically in Figs.
3–6. Since these figures are three dimensional, in the above plots the projections x1 � x2, x1 � x3 and x2 � x3 are shown. Even
though MATLAB supports the construction of 3D plots, these 2D graphs are more suitable for preview and they can be very
easily extended in three dimensions.

The basin of attraction of a root is defined as the fraction of the parameter space points ðx1; x2; x3Þ – namely, the values of
the initial conditions – for which the neural network converged to that root. The ratio of the number of these basin points to
the total number of the tested initial condition points multiplied by 100, gives the percentage defined above. For each one of
the estimated roots, the best simulation run with respect to the minimal iteration number was identified.

The experimental results associated with this system are shown in Tables 2 and 3. Table 2 contains for each one of the
identified roots, the number of systems converged to that root, the average number of iterations and the mean square error
as well as the standard deviation of those values, and the average value of the x1, x2 and x3 components for each root. On the
other hand, the data of Table 3 are associated with the best run for each root, with the criterion for the best system to be the
minimum number of iterations. The values shown for each best run, are the initial conditions ðx0

1; x
0
2; x

0
3Þ, the number of

iterations, as well as the values of the functions F1ðx1; x2; x3Þ, F2ðx1; x2; x3Þ and F3ðx1; x2; x3Þ. For all best runs the value of MSE
were equal to E� 16.
Fig. 3. Number of basin points for each one of the roots of System 1 and the nonconverging behavior, and the associated pie chart.



Fig. 4. The basin of attraction for the roots 1,2 and 3 of the System 1 in the intervals defined above. For each root, the projections x1 � x2, x1 � x3, and x2 � x3

are shown in the top, middle, and bottom figure, respectively.

Fig. 5. The basin of attraction for the roots 4,5 and 6 of the System 1 in the intervals defined above. For each root, the projections x1 � x2, x1 � x3, and x2 � x3

are shown in the top, middle, and bottom figure, respectively.
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Fig. 6. The basin of attraction for the roots 7 and 8 of the System 1 in the intervals defined above. For each root, the projections x1 � x2, x1 � x3, and x2 � x3

are shown in the top, middle, and bottom figure, respectively.
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The variation of the iteration number with the learning rate for the first example system is shown in Fig. 7. Due to the
large variation of the iteration number for the eight roots of the system, the vertical axis is not in a linear scale as the
horizontal axis but in a logarithmic one. From this figure it is clear that in most cases the number of iterations decreases, as a
learning rate increases, a fact, that it is of course expected. However, it has to be mentioned that for greater values of learning
rate, the neural network could not be able to converge to some root, and therefore, the allowable learning rate values are
much smaller than the typical value of 0.5–0.7 associated with the classical back-propagation value. This relatively small
values for the learning rate, leads to relatively large number of iterations, compared with the iteration number associated
with other methods as it is pointed out in the concluding section.
Example 2. The second system we present has four real roots and it consists of the following equations:
F1ðx1; x2; x3Þ ¼ x3
1 þ x3

2 þ x3
3 � 3x2

1 � 2x2
2 � 2x2

3 þ 2x1 þ x2 þ x3 ¼ 0;

F2ðx1; x2; x3Þ ¼ x3
1 þ x3

2 þ x3
3 � x2

1 � 5x2
2 � x2

3 þ 8x2 � 4 ¼ 0;

F3ðx1; x2; x3Þ ¼ x3
1 þ x3

2 þ x3
3 � 4x2

1 � 4x2
2 � 5x2

3 þ 4x1 þ 5x2 þ 8x3 � 6 ¼ 0:
The solution of this system with traditional methods reveals the existence of four roots with values

1. ðx1; x2; x3Þ ¼ ð1:428042;0:384132;1:383866Þ.
2. ðx1; x2; x3Þ ¼ ð1:107007;1:008547;0:568966Þ.



Table 2
The experimental results for the eight roots of the first algebraic system.

Root no. AVG iteration STDEV iteration AVG MSE STDEV MSE

1 01451 04383:449 9:33 � 10�17 2:58 � 10�17

2 19804 17287:220 2:66 � 10�15 1:24 � 10�13

3 19688 17374:550 3:67 � 10�15 1:53 � 10�13

4 24297 16527:800 3:81 � 10�15 1:29 � 10�13

5 23075 15753:260 3:71 � 10�15 1:20 � 10�13

6 3193 10744:260 8:89 � 10�17 3:23 � 10�17

7 19162 16127:700 3:97 � 10�15 1:52 � 10�13

8 19121 16205:900 3:50 � 10�15 1:56 � 10�13

Root AVG AVG AVG
no. x1 x2 x3

1 �1 �1 �1
2 �1 �1 þ1
3 �1 þ1 �1
4 þ1 �1 þ1
5 þ1 þ1 �1
6 þ1 þ1 þ1
7 �1:224744 4 � 10�9 1:224744

8 1:224744 8 � 10�9 �1:224744

Table 3
The results for the best run for each one of the eight roots of the first algebraic system.

Root x0
1 x0

2 x0
3

Iterations F1 F2 F3

1 �1:1 �1:1 �1:1 0138 �10�8 �10�8 0

2 �1:0 �0:5 þ1:1 6224 �10�8 �10�8 0

3 �1:1 þ0:7 �1:3 6188 �10�8 �10�8 0

4 þ0:5 �1:4 þ0:7 7357 þ10�8 �10�8 0

5 þ1:0 þ0:7 �1:7 7045 �10�8 þ10�8 0

6 þ1:1 þ1:1 þ1:1 0054 0 þ10�8 0

7 �1:2 þ0:1 þ1:7 5434 þ10�8 �10�8 0

8 þ0:6 �0:3 �1:2 5615 þ10�8 �10�8 0

Fig. 7. The variation of the iteration number as a function of the learning rate for the first example system.
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3. ðx1; x2; x3Þ ¼ ð�0:020060;0:856390;1:143860Þ.
4. ðx1; x2; x3Þ ¼ ð0;1;1Þ.



Fig. 8. Number of basin points for each one of the roots of System 2 and the nonconverging behavior, and the associated pie chart.

Fig. 9. The basin of attraction for the roots 1 and 2 of the System 2 in the intervals defined above. For each root, the projections x1 � x2, x1 � x3, and x2 � x3

are shown in the top, middle, and bottom figure, respectively.
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Fig. 10. The basin of attraction for the roots 3 and 4 of the System 2 in the intervals defined above. For each root, the projections x1 � x2, x1 � x3, and x2 � x3

are shown in the top, middle, and bottom figure, respectively.

Table 4
The experimental results for the four roots of the second algebraic system.

Root no. AVG iteration STDEV iteration AVG MSE STDEV MSE AVG x1 AVG x2 AVG x3

1 05755 16561:010 10�16 3:82 � 10�32 1:428042 0:384133 1:383867

2 06778 15292:079 10�16 5:71 � 10�30 1:070070 1:008547 0:568966

3 09366 15683:740 1:03 � 10�16 9:22 � 10�17 �0:020060 0:856387 1:143864

4 15433 20414:910 1:01 � 10�16 4:45 � 10�17 9:52 � 10�9 1 1
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As in the previous case, the neural model solved the system with a lot of different initial conditions in order to identify all
the four roots and estimate the basin of attraction for each one of them. More specifically, the parameters x1, x2 and x3 were
varied in the interval �3 6 xi 6 3 with a variation step Dxi ¼ 0:2 ði ¼ 1;2;3Þ. The learning rate value was b ¼ 0:05 and the
maximum number of iterations was set to N ¼ 100;000. The percentage of the basin points for the four roots and the
nonconverging behavior are shown in Fig. 8, while the projections x1 � x2, x1 � x3 and x2 � x3 are plotted in Figs. 9 and 10.
Tables 4 and 5 are similar to Tables 2 and 3 respectively and contain the data of the statistical analysis applied to the second
system.



Table 5
The results for the best run for each one of the four roots of the second algebraic system.

Root x0
1 x0

2 x0
3

Iterations F1 F2 F3

1 þ1:2 1 þ1:6 0304 �2 � 10�8 0 0

2 þ1:4 1 �0:2 0734 �2 � 10�8 �10�8 0

3 þ0:2 0 þ0:8 1992 þ2 � 10�8 0 �10�8

4 �0:8 1 þ1:0 1930 þ2 � 10�8 0 �10�8

Fig. 11. The variation of the iteration number as a function of the learning rate for the second example system.

Table 6
Simulation results for the proposed neural method, the trust-region-dogleg as well as the trust-region-reflective algorithms. In the results associated with the
neural method the last column represents the learning rate associated with the run gave the presented results.

Root x1 x2 x3 Iterations F1 F2 F3 LRate

Neural based nonlinear system solver
1 �1:000000 �1:000000 �1:000000 0006 �10�8 �10�8 10�8 0:040

2 �1:000000 �1:000000 þ1:000000 0797 10�8 �10�8 �10�8 0:050

3 �1:000000 þ0:999999 �0:999999 0886 �10�8 �10�8 0 0:050

4 þ0:999999 �0:999999 þ1:000000 1397 �10�8 þ10�8 0 0:045

5 þ1:000000 þ0:999999 �0:999999 1602 �10�8 þ10�8 0 0:045

6 þ1:000000 þ1:000000 þ1:000000 0010 þ10�8 0 þ10�8 0:015

7 �1:224744 �0:000000 þ1:224744 1524 �10�8 þ10�8 0 0:030

8 þ1:224744 �0:000000 �1:224744 0754 �10�8 �10�8 �10�8 0:030

F1 � 10�a F2 � 10�a F3 � 10�a a

Trust-region-dogleg algorithm
1 �0:999982 �0:999999 �1:000017 15 �0:123602 �0:062667 �0:180998 08
2 �0:999999 �1:000000 þ0:999999 07 �0:105471 �0:071054 �0:004440 13
3 �1:000000 þ1:000000 �0:999999 05 �0:000000 þ0:666133 þ0:444089 15
4 þ1:000000 �0:999999 þ1:000000 05 þ0:174749 þ0:013256 þ0:373923 11
5 þ0:999999 þ0:999999 �1:000000 05 �0:654587 �0:462963 �0:385114 11
6 þ0:999982 þ0:999999 þ1:000023 15 þ0:298266 þ0:122312 þ0:317619 08
7 �1:224744 �0:000000 þ1:224744 05 þ0:888178 þ0:444089 �0:888178 15
8 þ1:224744 �0:000000 �1:224744 05 �0:103483 �0:068491 �0:069544 10

Trust-region-reflective algorithm
1 �0:998635 �1:001183 �1:000180 12 �0:998635 �1:001183 �1:000180 04
2 �1:000000 �1:000000 þ1:000000 06 þ0:222044 þ0:444089 �0:000000 15
3 �1:000000 þ1:000000 �1:000000 05 þ0:444089 þ0:444089 þ0:000000 15
4 þ1:000000 �0:999999 þ1:000000 05 þ0:179523 þ0:005684 þ0:357758 11
5 þ0:999999 þ0:999999 �1:000000 05 �0:648014 �0:450794 �0:383248 11
6 þ0:999999 þ1:000000 þ1:000000 07 þ0:088817 þ0:000000 þ0:222044 14
7 �1:224744 �0:000000 þ1:224744 05 þ0:000000 þ0:222044 þ0:440089 15
8 þ1:224744 �0:000000 �1:224744 07 þ0:932587 þ0:999200 �0:799360 14
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The variation of the iteration number with the learning rate for the second example system is shown in Fig. 11 and it is
characterized by the same features as in the case of the first example system discussed above. It can be easily seen that the
variation of the learning rate is shown more clearly in Fig. 11 than Fig. 7 since the carves are shown in lin-lin axes and not in
lin-log axes (as in Fig. 7) due to the large spreading of the iteration number for all the available roots.



Table 7
Simulation results for the Levenberg–Marquardt algorithm as well as the multivariate Newton–Raphson method with partial derivatives. The k parameter of
the Levenberg–Marquardt algorithm has the default value k ¼ 0:01.

Root x1 x2 x3 Iterations F1 � 10�a F2 � 10�a F3 � 10�a a

Levenberg–Marquardt algorithm
1 �1:000000 �0:999999 �0:999999 04 �0:024558 þ0:007482 �0:112176 11
2 �1:000000 �1:000000 þ1:000000 07 þ0:341948 �0:421884 �0:133226 13
3 �1:000000 þ1:000000 �1:000000 05 þ0:177635 �0:444089 �0:266453 14
4 þ0:999999 �0:999999 þ1:000000 05 þ0:236477 þ0:190514 þ0:607514 12
5 þ0:999999 þ1:000000 �1:000000 05 �0:515010 �0:675504 �0:469135 11
6 þ0:999982 þ1:000000 þ1:000000 04 þ0:113242 �0:008881 þ0:275335 13
7 �1:224744 �0:000000 þ1:224744 05 þ0:888178 þ0:444089 �0:000000 15
8 þ1:224744 �0:000000 �1:224744 10 �0:187116 þ0:235652 þ0:073100 09

Multivariate Newton–Raphson method with partial derivatives
1 �1:000000 �1:000000 �1:000000 2865 �0:444089 �0:222044 �0:444089 15
2 þ1:000000 �1:000000 þ1:000000 0009 �0:444089 þ0:000000 þ0:888178 15
3 �1:000000 þ1:000000 �1:000000 0005 þ0:000000 þ0:000000 þ0:000000 00
4 þ1:000000 �1:000000 þ1:000000 0006 �0:044408 �0:044408 þ0:177635 14
5 þ1:000000 þ1:000000 �1:000000 0006 �0:111022 þ0:000000 þ0:000000 15
6 þ1:000000 �1:000000 þ1:000000 0661 þ0:000000 þ0:000000 0:0000000 00
7 �1:224744 �0:000000 þ1:224744 0005 �0:155431 �0:128785 �0:479616 13
8 �0:999999 �0:999999 �1:000000 0045 �0:888178 þ0:666133 �0:888178 15
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After the presentation of the experimental results that demonstrate the application of the proposed neural solver, let us
proceed now to a comparison between the proposed method and other well known methods with respect to their
performance. Since the proposed algorithm is an iterative one, we chose for this comparison well known iterative numerical
algorithms such as the trust-region-dogleg [3], the trust-region-reflective [3] and the Levenberg–Marquardt algorithm
[15,20], as well as the multivariate Newton–Raphson method with partial derivatives. The first three algorithms are
supported by the fsolve function of the Optimization Toolbox of the MATLAB programming environment, while the Newton–
Raphson MATLAB implementation can be found in the literature – for a theoretical description of this algorithm, see for
example [28]. These algorithms were used to solve the problem using the initial conditions ðx0; y0; z0Þ of Table 3 associated
with the best run (to save pages, this comparison is restricted only to the first example system with eight roots, since its
extension to the second example system is straightforward).

The simulation results of these comparisons can be found in Tables 6 and 7. Table 6 contains the results of the proposed
neural solver as well as the trust-region-dogleg and trust-region-reflective algorithms. On the other hand, Table 7 contains
the results of the Levenberg–Marquardt and Newton–Raphson methods. Regarding the results associated with the proposed
algorithm, the last column contains the learning rate value that gave the associated iteration number for the specified initial
conditions, while for the other methods this column contains the order of magnitude of the functions evaluation in the
position of the estimated root.

From Tables 6 and 7 it can be easily seen that even though the neural based approach gave the correct results and with
the same accuracy, it requires much more iterations than the other methods, due to the small learning rate values that allow
the network to converge (see the discussion above). Of course, this situation can be improved somehow by adjusting
appropriately the learning rate value, as it can be easily seen by comparing the number of iterations in Tables 3 (a fixed
learning rate value b ¼ 0:05) and 6 (the optimum learning rate identified via experimentation). In some cases (namely for
some methods and some roots) the neural method gave more accurate results than the other methods. From the last row in
Table 7 it can be seen that the Newton–Raphson method converged to the Root 1 instead of Root 8, possibly because the
associated initial condition is located near the boundary of the basin of attraction of these two roots. Besides this
disadvantage of the neural based approach (which, actually is not a major problem since modern computing systems are
characterized by very high speeds, and in most cases the duration of simulation time is not an issue), the proposed method is
easy in its implementation (since it uses the classical back propagation approach and therefore it computes the function
values in the first pass and the values of the partial derivatives via the estimation of d parameters), in contrast with the other
methods that are more difficult to implement since they require a lot of mathematics as well as complicated operations such
as Jacobian evaluations at specified points.

8. Conclusions and future work

The objective of this research was the numerical estimation of the roots of complete 3� 3 nonlinear algebraic systems of
polynomial equations using back-propagation neural networks. The main advantage of this approach is the simple and
straightforward solution of the system, by building a structure that simulates exactly the nonlinear system under consider-
ation and find its roots via the classical back propagation approach. Depending on the position on the parameter space of the
initial condition used in each case, each run converged to one of the eight possible solutions or diverged to infinity; therefore,
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the proposed neural structure is capable of finding all the roots of such a system, although this cannot be done in only one
step. One of the tasks associated with the future work on this subject is to improve or redesign the neural solver in order to
find all roots in only one run.

This research is going to be extended to cover systems with more dimensions and different types of equations of non-
polynomial nature. Special cases have to be investigated – as the case of double roots (and in general of roots with arbitrary
multiplicity) and the associated theory has to be formulated. Finally, this structure can be extended to cover the case of com-
plex roots and complex coefficients in nonlinear algebraic systems.
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